【題目】如圖,已知在中,邊上一點,,的外接圓,的直徑,且交于點

1)求證:的切線;

2)過點,垂足為點,延長于點,若,求的長;

3)在滿足(2)的條件下,若,求的半徑及的值.

【答案】1)見解析;(2AC;(3sinACE

【解析】

1)根據(jù)圓周角定理得出∠ACD90°以及利用∠PAC=∠PBA得出∠CAD+∠PAC90°進(jìn)而得出答案;
2)首先得出△CAG∽△BAC,進(jìn)而得出AC2AGAB,求出AC即可;
3)先求出AF的長,根據(jù)勾股定理得:AG,即可得出sinADB的值,利用∠ACE=∠ACB=∠ADB,求出即可.

解:(1)證明:連接CD,
AD是⊙O的直徑,
∴∠ACD90°,
∴∠CAD+∠ADC90°,
又∵∠PAC=∠PBA,∠ADC=∠PBA
∴∠PAC=∠ADC,
∴∠CAD+∠PAC90°,即∠PAD=90°,
PAOA
又∵AD是⊙O的直徑,
PA是⊙O的切線;


2)由(1)知,PAAD,
又∵CFAD,
CFPA
∴∠GCA=∠PAC,
又∵∠PAC=∠PBA
∴∠GCA=∠PBA,
又∵∠CAG=∠BAC,
∴△CAG∽△BAC,
,即AC2AGAB,
AGAB48,
AC248
AC
3)設(shè)AFx,
AFFD12,
FD2x
ADAFFD3x
RtACD中,
CFAD
由射影定理得:AC2AFAD,
3x248
解得;x4
AF4,AD12
∴⊙O半徑為6
RtAFG中,∵AF4,GF2
∴根據(jù)勾股定理得:AG,
由(2)知,AGAB48,
AB,
連接BD,∵AD是⊙O的直徑,
∴∠ABD90°
RtABD中,
sinADB,AD12,AB,
sinADB
∵∠ACE=∠ACB=∠ADB,
sinACE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線與直線交于兩點,且兩點之間的拋物線上總有兩個縱坐標(biāo)相等的點.

1)求證:;

2)過軸的垂線,交直線,,且當(dāng),,三點共線時,軸.

①求的值:

②對于每個給定的實數(shù),以為直徑的圓與直線總有公共點,求的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)活動課上,王老師出示一道數(shù)學(xué)題目:“在平面直角坐標(biāo)系中,當(dāng)為何值時,拋物線與直線段唯一公共點或有兩個公共點?”某學(xué)習(xí)小組經(jīng)探究得到以下四個結(jié)論:

①當(dāng)時,有唯一公共點;

②若為整數(shù),則僅當(dāng)的值為4567時,才有唯一公共點;

③若為整數(shù),則當(dāng)的值為123時,有兩個公共點;

④當(dāng)時,有兩個公共點.其中正確的結(jié)論有(

A.①②④B.①②③C.①③D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點坐標(biāo)為,點軸的負(fù)半軸上,點、均在線段上,且,點的橫坐標(biāo)為.在中,若軸,軸,則稱為點的“榕樹三角形”.

1)若點坐標(biāo)為,且,則點、的“榕樹三角形”的面積為

2)當(dāng)點的“榕樹三角形”是等腰三角形時,求點的坐標(biāo).

3)在(2)的條件下,作過、、三點的拋物線

①若點必為拋物線上一點,求點、的“榕樹三角形”面積之間的函數(shù)關(guān)系式.

②當(dāng)點、的“榕樹三角形”面積2,且拋物線與點的“榕樹三角形”恰有兩個交點時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD>AB,連接AC,將線段AC繞點A順時針旋轉(zhuǎn)90得到線段AE,平移線段AE得到線段DF(A與點D對應(yīng),點E與點F對應(yīng)),連接BF,分別交直線ADAC于點G,M,連接EF

(1) 依題意補全圖形;

(2) 求證:EGAD;

(3) 連接EC,交BF于點N,若AB=2BC=4,設(shè)MB=a,NF=b,試比較之間的大小關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新能源汽車環(huán)保節(jié)能,越來越受到消費者的喜愛.各種品牌相繼投放市場.一汽貿(mào)公司經(jīng)銷某品牌新能源汽車.去年銷售總額為5000萬元,今年1~5月份,每輛車的銷售價格比去年降低1萬元.銷售數(shù)量與去年一整年的相同.銷售總額比去年一整年的少20%,今年1~5月份每輛車的銷售價格是多少萬元?設(shè)今年1~5月份每輛車的銷售價格為x萬元.根據(jù)題意,列方程正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點在反比例函數(shù)的圖象上,過點軸,垂足為,直線經(jīng)過點,與軸交于點,且,.

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)直接寫出關(guān)于的不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形的一條邊長為x,周長的一半為y,定義(x,y)為這個矩形的坐標(biāo)。如圖2,在平面直角坐標(biāo)系中,直線x=1,y=3將第一象限劃分成4個區(qū)域,已知矩形1的坐標(biāo)的對應(yīng)點A落在如圖所示的雙曲線上,矩形2的坐標(biāo)的對應(yīng)點落在區(qū)域④中,則下面敘述中正確的是( )

A. A的橫坐標(biāo)有可能大于3

B. 矩形1是正方形時,點A位于區(qū)域②

C. 當(dāng)點A沿雙曲線向上移動時,矩形1的面積減小

D. 當(dāng)點A位于區(qū)域①時,矩形1可能和矩形2全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班男生分成甲、乙兩組進(jìn)行引體向上的專項訓(xùn)練,已知甲組有名男生,并對兩組男生訓(xùn)練前、后引體向上的個數(shù)進(jìn)行統(tǒng)計分析,得到乙組男生訓(xùn)練前、后引體向上的平均個數(shù)分別是個和個,及下面不完整的統(tǒng)計表和統(tǒng)計圖.

甲組男生訓(xùn)練前、后引體向上個數(shù)統(tǒng)計表(單位:個)

甲組

男生

男生

男生

男生

男生

男生

平均個數(shù)

眾數(shù)

中位數(shù)

訓(xùn)練前

訓(xùn)練后

根據(jù)以上信息,解答下列問題:

(1) , , ;

(2)甲組訓(xùn)練后引體向上的平均個數(shù)比訓(xùn)練前增長了 ;

(3)你認(rèn)為哪組訓(xùn)練效果好?并提供一個支持你觀點的理由;

(4)小華說他發(fā)現(xiàn)了一個錯誤:“乙組訓(xùn)練后引體向上個數(shù)不變的人數(shù)占該組人數(shù)的,所以乙組的平均個數(shù)不可能提高個這么多.”你同意他的觀點嗎?說明理由.

查看答案和解析>>

同步練習(xí)冊答案