【題目】如圖,AB 是⊙O的直徑,∠DAB的角平分線AC交⊙O于點C,過點C作CD⊥AD于D,AB的延長線與DC的延長線相交于點P,∠ACB的角平分線CE交AB于點F、交⊙O于E.
(1)求證:PC與⊙O相切;
(2)求證:PC=PF;
(3)若AC=8,tan∠ABC=,求線段BE的長.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)如圖,連接OC,根據(jù)AC是∠DAB的角平分線,證明OC∥AD,進而可證PC與⊙O相切;
(2)根據(jù)CF是∠ACB的角平分線,和外角定義即可得∠PFC=∠PCF,進而得PC=PF;
(3)根據(jù)AB 是⊙O的直徑,可得∠ACB=90°,根據(jù)AC=8,tan∠ABC==,可得BC=6,再根據(jù)勾股定理和垂徑定理即可得線段BE的長.
(1)如圖,連接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵AC是∠DAB的角平分線,
∴∠DAC=∠OAC,
∴∠OCA=∠DAC,
∴OC∥AD,
∵AD⊥CD,
∴OC⊥CD,
∴PC與⊙O相切;
(2)∵CF是∠ACB的角平分線,
∴∠ACF=∠BCF,
∵∠CAF=∠PCB,
∴∠ACF+∠CAF=∠BCF+∠PCB,
∴∠PFC=∠PCF,
∴PC=PF.
(3)∵AB 是⊙O的直徑,
∴∠ACB=90°,
∵AC=8,tan∠ABC==,
∴BC=6,
∴AB==10,
∴OB=OE=5,
∵∠ACE=∠BCE,
∴,
∴EO⊥AB,
∴BE==5.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+(m﹣2)x+3(m+1)與x軸交于AB兩點(A在B左側(cè)),與y軸正半軸交于點C.
(1)當m≠﹣4時,說明這個二次函數(shù)的圖象與x軸必有兩個交點;
(2)若OAOB=6,求點C的坐標;
(3)在(2)的條件下,在x軸下方的拋物線上找一點P,使S△PAC的面積為15,求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是的直徑,D是的中點,于E,交CB于點過點D作BC的平行線DM,連接AC并延長與DM相交于點G.
求證:GD是的切線;
求證:;
若,,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在平面直角坐標系中,拋物線y=ax2﹣2ax+4(a<0)交x軸于點A、B,與y軸交于點C,AB=6.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點R為第一象限的拋物線上一點,分別連接RB、RC,設(shè)△RBC的面積為s,點R的橫坐標為t,求s與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,如圖3,點D在x軸的負半軸上,點F在y軸的正半軸上,點E為OB上一點,點P為第一象限內(nèi)一點,連接PD、EF,PD交OC于點G,DG=EF,PD⊥EF,連接PE,∠PEF=2∠PDE,連接PB、PC,過點R作RT⊥OB于點T,交PC于點S,若點P在BT的垂直平分線上,OB﹣TS=,求點R的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,點D在邊BC上,點E在線段AD上.
(1)若∠BAC=∠BED=2∠CED=α,
①若α=90°,AB=AC,過C作CF⊥AD于點F,求的值;
②若BD=3CD,求的值;
(2)AD為△ABC的角平分線,AE=ED=2,AC=5,tan∠BED=2,直接寫出BE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為推動“時刻聽黨話 永遠跟黨走”校園主題教育活動,計劃開展四項活動:A:黨史演講比賽,B:黨史手抄報比賽,C:黨史知識競賽,D:紅色歌詠比賽.校團委對學生最喜歡的一項活動進行調(diào)查,隨機抽取了部分學生,并將調(diào)查結(jié)果繪制成圖1,圖2兩幅不完整的統(tǒng)計圖.請結(jié)合圖中信息解答下列問題:
(1)本次共調(diào)查了 名學生;
(2)將圖1的統(tǒng)計圖補充完整;
(3)已知在被調(diào)查的最喜歡“黨史知識競賽”項目的4個學生中只有1名女生,現(xiàn)從這4名學生中任意抽取2名學生參加該項目比賽,請用畫樹狀圖或列表的方法,求出恰好抽到一名男生一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,中,,分別是上的點,且滿足.
(1)求證:
(2)在圖1中,是否存在與AP相等的線段?若存在,請找出來,并加以證明;若不存在,說明理由.
(3)若將“為上的點”改為:“為DB延長線上的點”其他條件不變(如圖2)若,求線段之間的數(shù)量關(guān)系(用含的式子表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com