【題目】如圖,正六邊形ABCDEF內(nèi)接于⊙O,在弧AB上取點(diǎn)P,連接AP,BP,過點(diǎn)D作DQ∥AP交⊙O于點(diǎn)Q,連接BQ. 已知BP=1,BQ=3,PQ的長(zhǎng)為 ,AP的長(zhǎng)為_____________.
【答案】,
【解析】
根據(jù)正六邊形的性質(zhì)過圓心O,則PQ也過圓心O,利用勾股定理可求得直徑,在直角三角形PMB中,利用含30度角的直角三角形的性質(zhì)求得BM、PM,再證得△ABM∽△QPB,可求得AM的長(zhǎng),即可求得結(jié)論.
連接PQ,,過B作AP的垂線交AP的延長(zhǎng)線為M,
∵正六邊形ABCDEF內(nèi)接于⊙O,DQ∥AP,
∴過圓心O,
∴PQ也過圓心O,
∴∠PBQ=∠PDQ=90°,
∵BP=1,BQ=3,
∴PQ=;
即⊙O的直徑為;
∴正六邊形的邊長(zhǎng)AB=,
∵∠APB=∠APD+∠DPB =90°+60°=150°,
∴∠BPM=180°-∠APB =180°-150°=30°,
∴BM==,PM=BM=,
∵∠MAB=∠BQP,∠AMB=∠QBP=90°,
∴△ABM∽△QPB,
∴AM:MB=BQ:BP=3:1=3,
∴AM=,
∴AP=AM-PM=,
故答案為:,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司推出一款產(chǎn)品,成本價(jià)10元/千克,經(jīng)過市場(chǎng)調(diào)查,該產(chǎn)品的日銷售量(千克)與銷售單價(jià)(元/克)之間滿足一次函數(shù)關(guān)系,該產(chǎn)品的日銷售量與銷售單價(jià)之間的幾組對(duì)應(yīng)值如下表:
銷售單價(jià)(元/千克) | 14 | 18 | 22 | 26 |
日銷售量(千克) | 240 | 180 | 120 |
(注:日銷售利潤(rùn)=日銷售量×(銷售單價(jià)-成本單價(jià)))
(1)求關(guān)于的函數(shù)解析式(不要求寫出的取值范圍);
(2)根據(jù)以上信息,填空:
①_____元;
②當(dāng)銷售價(jià)格_____元時(shí),日銷售利潤(rùn)最大,最大值是______元;
(3)該公司決定從每天的銷售利潤(rùn)中捐贈(zèng)100元給“精準(zhǔn)扶貧”對(duì)象,為了保證捐贈(zèng)后每天的剩余利潤(rùn)不低于1025元,試確定該產(chǎn)品銷售單價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對(duì)稱軸為直線的拋物線經(jīng)過點(diǎn)和.
(1)求拋物線解析式;
(2)設(shè)點(diǎn)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形是以為對(duì)角線的平行四邊形.
①求平行四邊形的面積與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
②當(dāng)平行四邊形的面積為24時(shí),請(qǐng)判斷平行四邊形是否為菱形?
③是否存在點(diǎn),使平行四邊形為正方形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,正,B(3,0),C(7,0),過點(diǎn)作直線,,的橫坐標(biāo)( )
A.4B.C.D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣4,0)
(1)b= ,點(diǎn)B的坐標(biāo)是 ;
(2)連接AC、BC,判斷∠CAB和∠CBA的數(shù)量關(guān)系,并說明理由
(3)如圖2,點(diǎn)D是拋物線上第二象限內(nèi)的一動(dòng)點(diǎn),過點(diǎn)D作DM⊥AC于點(diǎn)M,是否存在點(diǎn)D,使得△CDM中的某個(gè)角恰好等于∠BAC的2倍?若存在,寫出點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】奇異果是新西蘭的特產(chǎn),其實(shí)它的祖籍在中國(guó),又名“獼猴桃”.2018年1月份至6月份我市某大型超市新西蘭品種的奇異果銷售價(jià)格y(元/盒)與月份x(1≤x≤6,且x為整數(shù))之間的函數(shù)關(guān)系如下表:
7月份至12月份奇異果的銷售價(jià)格y(元/盒)與月份x之間滿足函數(shù)關(guān)系式:y=2x+20(7≤x≤12且x為整數(shù)).該超市去年奇異果銷售數(shù)量z(盒)與月份x(1≤x≤12,且x為整數(shù))之間存在如圖所示的變化趨勢(shì).若去年該超市奇異果的進(jìn)價(jià)為每盒20元,銷售奇異果需要一名超市員工,該員工每月固定人工費(fèi)用為1500元.
(1)請(qǐng)觀察圖表中的數(shù)據(jù)信息直接寫出2018年1月份至6月份銷售價(jià)格y與x之間的函數(shù)關(guān)系式__ ,根據(jù)如圖所示的變化趨勢(shì),直接寫出去年每月銷售數(shù)量z與x之間滿足的函數(shù)關(guān)系式__ .
(2)求出去年每月該超市的利潤(rùn)w(元)與月份x之間滿足的函數(shù)關(guān)系式.(利潤(rùn)=收入成本費(fèi)用)
(3)從今年1月份開始,超市決定每賣出一盒奇異果,公司向希望工程捐款2元,奇異果的進(jìn)價(jià)為每盒26元,雖然今年1月份奇異果的銷售價(jià)格比去年12月份增加4元,但1月份銷售數(shù)量仍比去年12月份增加了0.4a%;2月份銷售價(jià)格在1月份的基礎(chǔ)上增加了0.5a%,由于其它水果陸續(xù)上市,2月份的銷售量與1月份持平,這樣2月份的利潤(rùn)達(dá)到了15780元,請(qǐng)參考以下數(shù)據(jù),求出整數(shù)a的值.(參考數(shù)據(jù):=2025,=2116,=2209)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷市場(chǎng),就用13200元購(gòu)進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了10元.
(1)該商家購(gòu)進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價(jià)銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤(rùn)率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn),以為圓心作與軸切于原點(diǎn),與軸的另一個(gè)交點(diǎn)為,過作的切線.
(1)以直線為對(duì)稱軸的拋物線過點(diǎn)及點(diǎn),求次拋物線的解析式;
(2)第(1)問中的拋物線與軸的另一個(gè)交點(diǎn)為,過作的切線,為切點(diǎn),求此切線長(zhǎng);
(3)點(diǎn)是切線DE上的一個(gè)動(dòng)點(diǎn),當(dāng)與相似時(shí),求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電子產(chǎn)品銷售公司專門銷售某種品牌的電子產(chǎn)品.該公司給職工的工資由兩部分組成:一是基本保障工資,二是銷售獎(jiǎng)勵(lì)工資(銷售獎(jiǎng)勵(lì)工資=銷售每件產(chǎn)品的獎(jiǎng)勵(lì)金額×銷售的件數(shù)).下表是小張、小李兩位職工今年11月份的工資情況信息:
職工 | 小張 | 小李 |
月銷售件數(shù)(件) | 200 | 180 |
月工資(元) | 5000 | 4700 |
(1)該公司職工的月基本保障工資和銷售每件產(chǎn)品的獎(jiǎng)勵(lì)金額各是多少元?
(2)該公司職工小王計(jì)劃今年12月份獲得不少于6000元,那么小王12月份至少應(yīng)銷售多少件產(chǎn)品?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com