【題目】如圖,已知點,以為圓心作軸切于原點,與軸的另一個交點為,過的切線

1)以直線為對稱軸的拋物線過點及點,求次拋物線的解析式;

2)第(1)問中的拋物線與軸的另一個交點為,過的切線,為切點,求此切線長;

3)點是切線DE上的一個動點,當相似時,求出點的坐標.

【答案】1;(2;(3

【解析】

1)拋物線的對稱軸為L,則點D9,0),點A3,0),圓的半徑為3,將點A、D的坐標代入拋物線表達式得:y=ax-3)(x-9),將點C的坐標代入上式,即可求解;

2)根據(jù)切線的性質(zhì)可得,利用勾股定理求出;

3)分當BFDAED時、AECFBD兩種情況,分別求解即可.

1)設拋物線的解析式為;

∵拋物線經(jīng)過點,

解得:,,

.

即:.

2)連接,

的切線,

,,

∵直線是拋物線的對稱軸,點是拋物線與軸的交點,

,

;

中,,

.

(3)時,

,

,即

;

時,

,

,

,即;

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】2016年3月,我市某中學舉行了“愛我中國朗誦比賽”活動,根據(jù)學生的成績劃分為A、B、C、D四個等級,并繪制了不完整的兩種統(tǒng)計圖.根據(jù)圖中提供的信息,回答下列問題:

(1)參加朗誦比賽的學生共有   人,并把條形統(tǒng)計圖補充完整;

(2)扇形統(tǒng)計圖中,m=   ,n=   ;C等級對應扇形有圓心角為   度;

(3)學校欲從獲A等級的學生中隨機選取2人,參加市舉辦的朗誦比賽,請利用列表法或樹形圖法,求獲A等級的小明參加市朗誦比賽的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正六邊形ABCDEF內(nèi)接于⊙O,在弧AB上取點P,連接APBP,過點DDQAP交⊙O于點Q,連接BQ 已知BP=1,BQ=3,PQ的長為 ,AP的長為_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】感知:如圖,在中,,分別在邊上,連接分別為的中點,則的數(shù)量關系是:

探究:把繞點順時針方向旋轉(zhuǎn),如圖,連接

證明:

的度數(shù)為 _

應用:把繞點在平面內(nèi)自由旋轉(zhuǎn),若面積的最大值為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定,以二次函數(shù)y=ax2+bx+c的二次項系數(shù)a2倍為一次項系數(shù),一次項系數(shù)b為常數(shù)項構(gòu)造的一次函數(shù)y=2ax+b叫做二次函數(shù)y=ax2+bx+c子函數(shù),反過來,二次函數(shù)y=ax2+bx+c叫做一次函數(shù)y=2ax+b母函數(shù)

1)若一次函數(shù)y=2x-4是二次函數(shù)y=ax2+bx+c子函數(shù),且二次函數(shù)經(jīng)過點(3,0),求此二次函數(shù)的解析式及頂點坐標.

2)若子函數(shù)y=x-6母函數(shù)的最小值為1,求母函數(shù)的函數(shù)表達式.

3)已知二次函數(shù)y=-x2-4x+8子函數(shù)圖象直線lx軸、y軸交于CD兩點,動點P為二次函數(shù)y=-x2-4x+8對稱軸右側(cè)上的動點,求PCD的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形的對角線相交于點,延長,使,連接

(1)求證:四邊形是平行四邊形;

(2)連接,若,且,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,有下列結(jié)論:①;②;③若為任意實數(shù),則;④a-b+c>0;⑤若,且,則.其中,正確結(jié)論的個數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一個正方形紙片放置在平面直角坐標系中,點,點,,點.動點在邊上,點在邊上,沿折疊該紙片,使點的對應點始終落在邊上(點不與重合),點落在點處,交于點

(Ⅰ)如圖①,當時,求點的坐標;

(Ⅱ)如圖②,當點落在的中點時,求點的坐標;

(Ⅲ)隨著點邊上位置的變化,的周長是否發(fā)生變化?如變化,簡述理由;如不變,直接寫出其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著科技的進步和網(wǎng)絡資源的豐富,在線學習已經(jīng)成為更多人自主學習的選擇.某校計劃為學生提供以下四類在線學習方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學生需求,該校隨機對本校部分學生進行了你對哪類在線學習方式最感興趣的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖中提供的信息解答下列問題:

1)求本次調(diào)查的學生總?cè)藬?shù);

2)通過計算補全條形統(tǒng)計圖;

3)該校共有學生人,請你估計該校對在線閱讀最感興趣的學生有多少人.

查看答案和解析>>

同步練習冊答案