如圖1,已知正方形的邊長(zhǎng)為1,點(diǎn)在邊上,

90°,且交正方形外角的平分線于點(diǎn)。

(1)圖1中若點(diǎn)是邊的中點(diǎn),我們可以構(gòu)造兩個(gè)三角形全等來證明,請(qǐng)敘述你的一個(gè)構(gòu)造方案,并指出是哪兩個(gè)三角形全等(不要求證明);(3分)

(2)如圖2,若點(diǎn)在線段上滑動(dòng)(不與點(diǎn),重合)。

是否總成立?請(qǐng)給出證明;(5分)

②在如圖所示的直角坐標(biāo)系中,當(dāng)點(diǎn)滑動(dòng)到某處時(shí),點(diǎn)恰好落在拋物線上,求此時(shí)點(diǎn)的坐標(biāo).(4分)

 

解:(1)如圖1,取的中點(diǎn),連接

       △與△全等. 

  (2)①若點(diǎn)在線段上滑動(dòng)時(shí)總成立.

  證明:如圖2,在上截取.   ∵,∴,

∴△是等腰直角三角形,

,

平分正方形的外角,∴

.   而,

,        ∴△≌△

 


②過點(diǎn)軸于,   由①知,

設(shè),則,

∴點(diǎn)的坐標(biāo)為. ∵點(diǎn)恰好落在拋物線上,

,

(負(fù)值不合題意,舍去),

.                               

∴點(diǎn)的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,已知正方形ABCD,E是AD上一點(diǎn),F(xiàn)是BC上一點(diǎn),G是AB上一點(diǎn),H是CD上一點(diǎn),線段EF、GH交于點(diǎn)O,∠EOH=∠C,求證:EF=GH;
(2)如圖2,若將“正方形ABCD”改為“菱形ABCD”,其他條件不變,探索線段EF與線段GH的關(guān)系并加以證明;
(3)如圖3,若將“正方形ABCD”改為“矩形ABCD”,且AD=mAB,其他條件不變,探索線段EF與線段GH的關(guān)系并加以證明;
精英家教網(wǎng)
附加題:根據(jù)前面的探究,你能否將本題推廣到一般的平行四邊形情況?若能,寫出推廣命題,畫出圖形,并證明,若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知⊙O的半徑為2,點(diǎn)A的坐標(biāo)為(-4,0),點(diǎn)B為⊙O上的動(dòng)點(diǎn),以AB為邊向外做正方形ABCD.
(1)當(dāng)點(diǎn)B在y軸的正半軸上時(shí),如圖2,求點(diǎn)C的坐標(biāo).
(2)當(dāng)直線AB與⊙O相切時(shí),求直線AB的解析式.
(3)設(shè)動(dòng)點(diǎn)B的橫坐標(biāo)為m,正方形ABCD的面積為S,求出S與m的函數(shù)關(guān)系式,并判斷正方形ABCD的面積是否存在最大值或最小值?如果存在,求出m的值,如果不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

作圖題
(1)如圖1,已知?ABCD兩邊長(zhǎng)分別是1和2,一個(gè)內(nèi)角為60°,將?ABCD剪一刀成兩部分,并拼成一個(gè)等腰三角形.要求在原圖上畫出剪切線和組成的等腰三角形,并填寫等腰三角形的周長(zhǎng)(本題不限作圖工具)
圖1,周長(zhǎng)=
6
6
                      
圖2,周長(zhǎng)=
2+2
17
2+2
17

(2)如圖2,已知正方形ABCD邊長(zhǎng)為2,將正方形剪兩刀成三部分,并拼成一個(gè)等腰非直角三角形,要求在原圖上畫出剪切線和拼成的三角形,并填出等腰三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖4,已知正方形的邊長(zhǎng)為3,邊上一點(diǎn),.以點(diǎn)為中心,把△順時(shí)針旋轉(zhuǎn),得△,連接,則的長(zhǎng)等于          

 

查看答案和解析>>

同步練習(xí)冊(cè)答案