【題目】如圖,在△ABC中,點(diǎn)DE,F分別是AB,BCCA的中點(diǎn),AP是邊BC上的高

(1)求證:四邊形ADEF是平行四邊形;

(2)求證:∠DEF=DPF

【答案】1)見解析;(2)見解析.

【解析】

1)根據(jù)三角形的中位線定理可得EFAB,DEAC,再根據(jù)平行四邊形的判定證明即可;

2)根據(jù)平行四邊形的對(duì)角相等可得∠DEF=∠BAC,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得DPAD,FPAF,再根據(jù)等邊對(duì)等角可得∠DAP=∠DPA,∠FAP=∠FPA,然后求出∠DPF=∠BAC,等量代換即可得到∠DEF=∠DPF

證明:(1)∵點(diǎn)D,E,F分別是AB,BCCA的中點(diǎn),

DEEFABC的中位線,

EFAB,DEAC,

∴四邊形ADEF是平行四邊形;

2)∵四邊形ADEF是平行四邊形,

∴∠DEF=∠BAC,

D,F分別是AB,CA的中點(diǎn),AP是邊BC上的高,

DPAD,FPAF

∴∠DAP=∠DPA,∠FAP=∠FPA,

∵∠DAP+∠FAP=∠BAC,∠DPA+∠FPA=∠DPF,

∴∠DPF=∠BAC,

∴∠DEF=∠DPF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為落實(shí)“垃圾分類”,環(huán)保部門要求垃圾要按A,B,C,D四類分別裝袋、投放,其中A類指廢電池,過(guò)期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料、廢紙等可回收物,D類指出其他垃圾,小明、小亮各投放了一袋垃圾.

(1)直接寫出小明投放的垃圾恰好是A類的概率;

(2)求小亮投放的垃圾與小明投放的垃圾是同一類的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】光明中學(xué)八年級(jí)師生共466人準(zhǔn)備參加社會(huì)實(shí)踐活動(dòng),現(xiàn)預(yù)備了49座和37座兩種客車共10輛,剛好坐滿.已知37座客車租金為每輛700元,49座客車為每輛1200元,問:

149座和37座兩種客車各租了多少輛?

2)若租用同種客車,要使每位師生都有座位,應(yīng)該怎么租用才合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在線段的同側(cè),,.

(1)如圖,已知,,求的長(zhǎng);

(2)如圖,將繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是點(diǎn)、,連接.過(guò)點(diǎn)于點(diǎn),交于點(diǎn),求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016浙江省麗水市)如圖,在菱形ABCD中,過(guò)點(diǎn)BBEAD,BFCD,垂足分別為點(diǎn)E,F,延長(zhǎng)BDG,使得DG=BD,連結(jié)EG,FG,若AE=DE,則=____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸,軸分別交于點(diǎn),點(diǎn),上的一點(diǎn),若將沿折疊,使點(diǎn)恰好落在軸上的點(diǎn)處,則直線的表達(dá)式是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx+b(k為常數(shù),k≠0)與雙曲線y=(m為常數(shù),m>0)的交點(diǎn)為A(4,1)、B(﹣1,﹣4),連接AO并延長(zhǎng)交雙曲線于點(diǎn)E,連接BE.

(1)分別求出這兩個(gè)函數(shù)的表達(dá)式;

(2)求△ABE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某幢建筑物10m高的窗口A處用水管向外噴水,噴出的水成拋物線狀(拋物線所在平面與地面垂直).拋物線的最高點(diǎn)M離墻1m,離地面m.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線的解析式.

(2)求水的落地點(diǎn)B與點(diǎn)O的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,長(zhǎng)方體的長(zhǎng),寬,高,點(diǎn)上,且,一只螞蟻如果沿沿著長(zhǎng)方體的表面從點(diǎn)爬到點(diǎn),需要爬行的最短距離是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案