【題目】四邊形ABCD中,AB=BC=CD,∠ABC=60°,點E在AB上,∠AED=∠CEB,AD=5,DE+CE=,則BD的長為_____.
【答案】7
【解析】
連接AC,延長DE至F,使EF=CE,作正三角形ADG,使B、G分別在AD兩側,連接AF、BF、BG,證明△BEF≌△BEC(SAS),可證得△ABF是等邊三角形,得出AF=AB,∠BAF=60°,證明△DAF≌△GAB(SAS),得出BG=DF=DE+EF=DE+CE=,證明△ABC是等邊三角形,得出AC=BC=DC,∠ACB=60°,得出點C是△ABD的外心,由圓周角定理得出∠ADB=∠ACB=30°,證出∠BDG=∠ADB+∠ADG=90°,由勾股定理即可得出答案.
連接AC,延長DE至F,使EF=CE,作正三角形ADG,使B、G分別在AD兩側,連接AF、BF、BG,如圖所示:
∵∠AED=∠CEB,∠BEF=∠AED,
∴∠BEF=∠AED=∠CEB,
在△BEF和△BEC中,,
∴△BEF≌△BEC(SAS),
∴∠ABF=∠ABC=60°,BF=BC=AB,
∴△ABF是等邊三角形,
∴AF=AB,∠BAF=60°,
∵△ADG是等邊三角形,
∴∠ADG=∠DAG=60°=∠BAF,AG=AD=5,
∴∠DAF=∠DAB+∠BAF=∠DAB+∠DAG=∠GAB,
在△DAF和△GAB中,,
∴△DAF≌△GAB(SAS),
∴BG=DF=DE+EF=DE+CE=,
∵AB=BC,∠ABC=60°,
∴△ABC是等邊三角形,
∴AC=BC=DC,∠ACB=60°,
∴點C是△ABD的外心,
∴∠ADB=∠ACB=30°,
∴∠BDG=∠ADB+∠ADG=90°,
∴BD=;
故答案為:7.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,點C、D在⊙O上,CD=BD,E、F是線段AC、AB的延長線上的點,并且EF與⊙O相切于點D.
(1)求證:∠A=2∠BDF;
(2)若AC=3,AB=5,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一種折疊門,由上下軌道和兩扇長寬相等的活頁門組成,整個活頁門的右軸固定在門框
上,通過推動左側活頁門開關;圖2是其俯視圖簡化示意圖,已知軌道 ,兩扇活頁門的寬 ,點固定,當點在上左右運動時,與的長度不變(所有結果保留小數(shù)點后一位).
(1)若,求的長;
(2)當點從點向右運動60時,求點在此過程中運動的路徑長.
(參考數(shù)據(jù):sin50°≈0.77, cos50°≈0.64, tan50°≈1.19, π取3.14)
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是☉的直徑,為☉上一點,是半徑上一動點(不與重合),過點作射線,分別交弦,于兩點,過點的切線交射線于點.
(1)求證:.
(2)當是的中點時,
①若,判斷以為頂點的四邊形是什么特殊四邊形,并說明理由;
②若,且,則_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,F是弦AD的中點,連結OF并延長OF交⊙O于點E,連結BE交AD于點G,延長AD至點C,使得GC=BC,連結BC.
(1)求證:BC是⊙O的切線.
(2)⊙O的半徑為10,sinA=,求EG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AC為對角線,點E,F分別在AB,AD上,BE=DF,連接EF.
(1)求證:AC⊥EF;
(2)延長EF交CD的延長線于點G,連接BD交AC于點O,若BD=4,tanG=,求AO的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發(fā),沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時間到B處.在B處小亮觀測到媽媽所在的P處在北偏西37°的方向上,這時小亮與媽媽相距多少米(精確到1米)?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB<BC,點E為對角線AC上的一個動點,連接BE,DE,過E作EF⊥BC于F.設AE=x,圖1中某條線段的長為y,若表示y與x的函數(shù)關系的圖象大致如圖2所示,則這條線段可能是圖1中的( )
A.線段BEB.線段EFC.線段CED.線段DE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com