【題目】如圖,在等邊和等邊中,過作交延長線于點(diǎn).
(1)如圖,求證:四邊形為菱形;
(2)如圖,過作交于點(diǎn),連接,不添加任何輔助線,直接寫出與相等的所有角(不包括).
【答案】(1)見詳解;(2)與相等的角有∠ABE,∠CBD,∠ACG,∠DEG.
【解析】
(1)由等邊三角形的性質(zhì),得到AB=BC=AC,BE=BD,∠ABC=∠BAC=∠EBD=60°,先證明△ABE≌△CBD,則∠BEF=∠BDA,然后證明△FEB≌△ADB,則BF=BA=AC,則四邊形AFBC是平行四邊形,由BC=AC,即可得到答案;
(2)由三角形的內(nèi)角和定理,得到∠ABE=∠ADE,由等量代換,得到∠CBD=∠ABE=∠ADE,由平行線的性質(zhì)得∠ACG=∠ADE,由ASA證明△ABE≌△ACG,則CG=BE=DE,得到四邊形CDEG是平行四邊形,則∠DEG=∠ACG=∠ADE,即可得到答案.
解:(1)如圖:
在等邊和等邊中,
∴AB=BC=AC,BE=BD,∠ABC=∠BAC=∠EBD=60°,
∴∠ABE+∠ABD=∠ABD+∠CBD=60°,
∴∠ABE=∠CBD,
∴△ABE≌△CBD(SAS),
∴∠AEB=∠CDB,
∴∠BEF=∠BDA,
∵BF∥AC,
∴∠ABF=∠BAC=60°,
∵∠FBE+∠ABE=∠ABE+ABD=60°,
∴∠FBE=∠ABD,
∵BE=BD,
∴△FEB≌△ADB,
∴BF=BA=AC,
∴四邊形AFBC是平行四邊形,
∵BC=AC,
∴四邊形AFBC是菱形;
(2)如圖:
∵∠BED=∠BAC=60°,∠BHE=∠DHA,
∴∠ABE=∠ADE;
由(1)知,∠CBD=∠ABE,
∴∠CBD=∠ADE;
∵CG∥DE,
∴∠ACG=∠ADE;
∴∠ACG=∠ABE,
∵AF∥BC,
∴∠BAE=∠ABC=∠BAC=60°,
∵AB=AC,
∴△ABE≌△ACG,
∴CG=BE=DE,
∵CG∥DE,
∴四邊形CDEG是平行四邊形,
∴∠DEG=∠ACG=∠ADE;
∴與相等的角有:∠ABE,∠CBD,∠ACG,∠DEG.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,點(diǎn)、分別在邊和上,沿折疊四邊形,使點(diǎn)、分別落在、處,得四邊形,點(diǎn)在上,過點(diǎn)作于點(diǎn),連接,則下列結(jié)論:①;②;
③;④若點(diǎn)是的中點(diǎn),則,其中,正確結(jié)論的序號是_______.(把所有正確結(jié)論的序號都在填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,平分交于點(diǎn),交于點(diǎn),作的外接圓.
(1)判斷直線與外接圓的位置關(guān)系,并說明理由;
(2)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過和兩點(diǎn)的拋物線交軸于兩點(diǎn),是拋物線上一動(dòng)點(diǎn),平行于軸的直線經(jīng)過點(diǎn).
(1)求拋物線的解析式;
(2)如圖1,軸上有點(diǎn)連接,設(shè)點(diǎn)到直線的距離為..小明在探究的值的過程中,是這樣思考的:當(dāng)是拋物線的頂點(diǎn)時(shí),計(jì)算的值;當(dāng)不是拋物線的頂點(diǎn)時(shí),猜想是一個(gè)定值.請你直接寫出的值,并證明小明的猜想.
(3)如圖2,點(diǎn)在第二象限,分別連接、,并延長交直線于兩點(diǎn).若兩點(diǎn)的橫坐標(biāo)分別為,試探究之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是邊上的中線,點(diǎn)為線段上一點(diǎn)(不與點(diǎn)、點(diǎn)重合),連接,作與的延長線交于點(diǎn),與交于點(diǎn),連接.
(1)求證:;
(2)求的度數(shù);
(3)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,,,分別是邊,上的動(dòng)點(diǎn),,連接,交于點(diǎn),過點(diǎn)作,且,若的度數(shù)最大時(shí),則長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知拋物線(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸負(fù)半軸交于點(diǎn)C,頂點(diǎn)為D,已知:S四邊形ACBD=1:4.
(1)求點(diǎn)D的坐標(biāo)(用僅含c的代數(shù)式表示);
(2)若tan∠ACB=,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,在△ABC中和△DCE中,,,,點(diǎn)D是BC的垂線AF上任意一點(diǎn).填空:
①的值為 ;
②∠ABE的度數(shù)為 .
(2)類比探究:如圖2,在△ABC中和△DCE中,,,點(diǎn)D是BC的垂線AF上任意一點(diǎn).請判斷的值及∠ABE的度數(shù),并說明理由;
(3) 拓展延伸:在(2)的條件下,若,,請直接寫出BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了應(yīng)對全球新冠肺炎,滿足抗疫物資的需求,某電機(jī)公司轉(zhuǎn)型生產(chǎn)呼吸機(jī)和呼吸機(jī),每臺呼吸機(jī)比每臺呼吸機(jī)的生產(chǎn)成本多200元,用5萬元生產(chǎn)呼吸機(jī)與用4.5萬元生產(chǎn)呼吸機(jī)的數(shù)量相等
(1)求每臺呼吸機(jī)、呼吸機(jī)的生產(chǎn)成本各是多少元?
(2)該公司計(jì)劃生產(chǎn)這兩種呼吸機(jī)共50臺進(jìn)行試銷,其中呼吸機(jī)為臺,生產(chǎn)總費(fèi)用不超過9.8萬元,試銷時(shí)呼吸機(jī)每臺售價(jià)2500元,呼吸機(jī)每臺售價(jià)2180元,公司決定從銷售呼吸機(jī)的利潤中按每臺捐獻(xiàn)元作為公司捐獻(xiàn)國家抗疫的資金,若公司售完50臺呼吸機(jī)并捐獻(xiàn)資金后獲得的利潤不超過23000元,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com