【題目】如圖,拋物線yax2+bx+ca≠0)的頂點(diǎn)為C2,﹣1),與x軸交于A,B兩點(diǎn),OA=3;

1)求此拋物線的解析式;

2)如圖1,一次函數(shù)y=﹣x+3圖象交x軸于點(diǎn)A,交y軸于點(diǎn)D,連結(jié)AC、BD,在x軸上有一點(diǎn)Q,使AQC ABD相似,求出點(diǎn)Q坐標(biāo);

3)如圖2,在直線ykx -1(k0)上是否存在唯一一點(diǎn)P,使得∠APB90°?若存在,請直接寫出此時(shí)k的值;若不存在,請說明理由.

【答案】1yx24x+3;(2Q點(diǎn)的坐標(biāo)為(0,0)或(,0);(3)存在,k=1,k=,k=

【解析】

1)由頂點(diǎn)坐標(biāo)為C2,﹣1)可得對稱軸為x=2,然后再根據(jù)二次函數(shù)圖像的對稱性,確定A、B的坐標(biāo),然后使用待定系數(shù)法即可解答;

2)先通過等腰三角形和相似三角形的性質(zhì)得到CAQDAB45°,然后分兩種情況解答即可;

3)設(shè)P點(diǎn)坐標(biāo)為(aka-1),以AB的中點(diǎn)O為圓心作⊙O,以AB為直徑畫圓恰好與直線ykx-1(k0)相切與P點(diǎn),然后確定圓的半徑長度,然后運(yùn)用兩點(diǎn)間距離公式列方程,最后根據(jù)條件即可確定k的取值.

解(1)∵函數(shù)圖像的頂點(diǎn)坐標(biāo)為C2,﹣1

∴對稱軸為x=2

OA=3

B點(diǎn)的橫坐標(biāo)為:2-(3-2)=1,A點(diǎn)的橫坐標(biāo)為3

∴A(3,0),B(1,0)

解得

∴函數(shù)解析式為yx24x+3

2)如圖:連接AC、QC、BD,

x=0,y=﹣0+3=3,即點(diǎn)D坐標(biāo)為(0,3

OA=OD

∴∠DAB45°

要使AQC∽△ADB,則CAQDAB45°,

當(dāng)時(shí),AQC∽△ADB,即,解得AQ3,此時(shí)Q0,0);

當(dāng)時(shí),AQC∽△ABD,即,解得AQ,此時(shí)Q0);

綜上所述,Q點(diǎn)的坐標(biāo)為(0,0)或(,0);

3)連接設(shè)P點(diǎn)坐標(biāo)為(a,ka-1),以AB的中點(diǎn)O為圓心作⊙O,以AB為直徑畫圓恰好與直線ykx-1(k0)相切與P點(diǎn),即APBP

A(3,0),B(1,0)

∴AO=BO=AB=1

即:(k-1a2-2k+2a+1=0

在直線ykx-1(k0)上是否存在唯一一點(diǎn)P,使得APB90°

當(dāng)(k-1a2-2k+2a+1=0為關(guān)于a的一元一次方程時(shí),則k-1=1,即k=1;

②①當(dāng)(k-1a2-2k+2a+1=0為關(guān)于a的一元二次方程時(shí),則:

2k+22-4k-1=0解得:k=,k=

綜上,存在滿足題意得k且取值為k=1k=,k=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),經(jīng)過點(diǎn)C的切線交AB的延長線于點(diǎn)E,ADECEC的延長線于點(diǎn)D,AD交⊙OF,F(xiàn)MABH,分別交⊙O、ACM、N,連接MB,BC.

(1)求證:AC平分∠DAE;

(2)若cosM=,BE=1,①求⊙O的半徑;②求FN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實(shí)數(shù)).其中結(jié)論正確的個(gè)數(shù)為( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A12,2)在直線yx上,過點(diǎn)A1A1B1y軸交直線yx于點(diǎn)B1,以點(diǎn)A1為直角頂點(diǎn),A1B1為直角邊在A1B1的右側(cè)作等腰直角A1B1C1,再過點(diǎn)C1A2B2y軸,分別交直線yxyxA2,B2兩點(diǎn),以點(diǎn)A2為直角頂點(diǎn),A2B2為直角邊在A2B2的右側(cè)作等腰直角A2B2C2,按此規(guī)律進(jìn)行下去,則等腰直角A8B8C8的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于,對稱軸為直線,與軸的交點(diǎn)之間(不包括這兩個(gè)點(diǎn)),下列結(jié)論:①當(dāng)時(shí),;②;③當(dāng)時(shí),;④.其中正確的結(jié)論的序號是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計(jì)劃組織學(xué)生參加書法、攝影、航模圍棋四個(gè)課外興題小組.要求每人必須參加.并且只能選擇其中一個(gè)小組,為了解學(xué)生對四個(gè)課外興趣小組的選擇情況,學(xué)校從全體學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并把調(diào)查結(jié)果制成如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(部分信息未給出).請你根據(jù)給出的信息解答下列問題:

(1)求參加這次問卷調(diào)查的學(xué)生人數(shù).并補(bǔ)全條形統(tǒng)計(jì)圖(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù));

(2)

(3)若某校共有1200名學(xué)生,試估計(jì)該校選擇圍棋課外興趣小組有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)FAC邊上的中點(diǎn),DCBC,與BF的延長線交于點(diǎn)D,AE平分∠BACBF于點(diǎn)E

1)求證:AEDC

2)若BD=8,求AD的長;

3)若∠BAC=30°,AC=12,點(diǎn)P是射線CD上一點(diǎn),求CP+AP的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C90°EAB邊上一點(diǎn),DAC邊上一點(diǎn),且點(diǎn)D不與A、C重合,EDAC

1)當(dāng)sinB=時(shí),

①求證:BE2CD.

②當(dāng)ADE繞點(diǎn)A旋轉(zhuǎn)到如圖2的位置時(shí)(45°<∠CAD90°).BE2CD是否成立?若成立,請給出證明;若不成立.請說明理由.

2)當(dāng)sinB=時(shí),將ADE繞點(diǎn)A旋轉(zhuǎn)到∠DEB90°,若AC10,AD2,求線段CD的長.

查看答案和解析>>

同步練習(xí)冊答案