【題目】如圖,拋物線過(guò)x軸上兩點(diǎn)A(9,0),C(﹣3,0),且與y軸交于點(diǎn)B(0,﹣12).
(1)求拋物線的解析式;
(2)若M為線段AB上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作MN平行于y軸交拋物線于點(diǎn)N.
①是否存在這樣的點(diǎn)M,使得四邊形OMNB恰為平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
②當(dāng)點(diǎn)M運(yùn)動(dòng)到何處時(shí),四邊形CBNA的面積最大?求出此時(shí)點(diǎn)M的坐標(biāo)及四邊形CBNA面積的最大值.
【答案】(1);(2)①不存在這樣的點(diǎn)M,理由見(jiàn)解析;②,四邊形CBNA面積的最大值為.
【解析】
(1)先根據(jù)點(diǎn)設(shè)拋物線的頂點(diǎn)式,再將點(diǎn)代入求解即可得;
(2)①先求出直線AB的解析式,從而可設(shè)點(diǎn)M、N的坐標(biāo)分別為,,從而可得,再根據(jù)平行四邊形的性質(zhì)可得,然后利用一元二次方程的根的判別式即可得出答案;
②先根據(jù)點(diǎn)的坐標(biāo)分別求出的長(zhǎng),再根據(jù)三角形面積公式可求出的面積,從而可得出四邊形CBNA面積的表達(dá)式,然后利用二次函數(shù)的性質(zhì)求解即可得.
(1)因?yàn)閽佄锞過(guò)x軸上兩點(diǎn)
所以設(shè)拋物線解析式為
將點(diǎn)代入得:
解得
則拋物線解析式為
即;
(2)如圖,設(shè)直線AB的解析式為
將點(diǎn)代入得:,解得
則直線AB的解析式為
由題意,可設(shè)點(diǎn)M的坐標(biāo)為,點(diǎn)N的坐標(biāo)為
則
①若四邊形OMNB為平行四邊形,則
即
整理得:
此方程的根的判別式,方程無(wú)實(shí)數(shù)根
則不存在這樣的點(diǎn)M,使得四邊形OMNB恰為平行四邊形;
②
點(diǎn)B到MN的距離等于,點(diǎn)A到MN的距離等于
因?yàn)?/span>M為線段AB上一個(gè)動(dòng)點(diǎn)
所以
由二次函數(shù)的性質(zhì)可知,當(dāng)時(shí),隨m的增大而增大;當(dāng)時(shí),隨m的增大而減小
則當(dāng)時(shí),取得最大值,最大值為
此時(shí),
故點(diǎn)M的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在三角形中,若有兩條中線互相垂直,則稱該三角形為中垂三角形.
(1)如圖(1),△ABC是中垂三角形,BD,AE分別是AC,BC邊上的中線,且BD⊥AE于點(diǎn)O,若∠BAE=45°,求證:△ABC是等腰三角形.
(2)如圖(2),在中垂三角形ABC中,AE,BD分別是邊BC,AC上的中線,且AE⊥BD于點(diǎn)O,猜想AB2,BC2,AC2之間的數(shù)量關(guān)系,并加以證明.
(3)如圖(3),四邊形ABCD是菱形,對(duì)角線AC,BD交于點(diǎn)O,點(diǎn)M,N分別是OA,OD的中點(diǎn),連接BM,CN并延長(zhǎng),交于點(diǎn)E.
①求證:△BCE是中垂三角形;
②若,請(qǐng)直接寫(xiě)出BE2+CE2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,點(diǎn)D在邊BC上,點(diǎn)E在線段AD上.
(1)若∠BAC=∠BED=2∠CED=α,
①若α=90°,AB=AC,過(guò)C作CF⊥AD于點(diǎn)F,求的值;
②若BD=3CD,求的值;
(2)AD為△ABC的角平分線,AE=ED=2,AC=5,tan∠BED=2,直接寫(xiě)出BE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在疫情期間,某地推出線上名師公益大課堂,為廣大師生、其他社會(huì)人士提供線上專業(yè)知識(shí)學(xué)習(xí)、心理健康疏導(dǎo).參與學(xué)習(xí)第一批公益課的人數(shù)達(dá)到2萬(wàn)人,因該公益課社會(huì)反響良好,參與學(xué)習(xí)第三批公益課的人數(shù)達(dá)到2.42萬(wàn)人.參與學(xué)習(xí)第二批、第三批公益課的人數(shù)的增長(zhǎng)率相同.
(1)求這個(gè)增長(zhǎng)率;
(2)據(jù)大數(shù)據(jù)統(tǒng)計(jì),參與學(xué)習(xí)第三批公益課的人數(shù)中,師生人數(shù)在參與學(xué)習(xí)第二批公益課的師生人數(shù)的基礎(chǔ)上增加了80%;但因?yàn)橐呀?jīng)部分復(fù)工,其他社會(huì)人士的人數(shù)在參與學(xué)習(xí)第二批公益課的其他社會(huì)人士人數(shù)的基礎(chǔ)上減少了60%.求參與學(xué)習(xí)第三批公益課的師生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為推動(dòng)“時(shí)刻聽(tīng)黨話 永遠(yuǎn)跟黨走”校園主題教育活動(dòng),計(jì)劃開(kāi)展四項(xiàng)活動(dòng):A:黨史演講比賽,B:黨史手抄報(bào)比賽,C:黨史知識(shí)競(jìng)賽,D:紅色歌詠比賽.校團(tuán)委對(duì)學(xué)生最喜歡的一項(xiàng)活動(dòng)進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中信息解答下列問(wèn)題:
(1)本次共調(diào)查了 名學(xué)生;
(2)將圖1的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)已知在被調(diào)查的最喜歡“黨史知識(shí)競(jìng)賽”項(xiàng)目的4個(gè)學(xué)生中只有1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生參加該項(xiàng)目比賽,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求出恰好抽到一名男生一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某地區(qū)企業(yè)信息化發(fā)展水平,從該地區(qū)中隨機(jī)抽取50家企業(yè)調(diào)研,針對(duì)體現(xiàn)企業(yè)信息化發(fā)展水平的A和B兩項(xiàng)指標(biāo)進(jìn)行評(píng)估,獲得了它們的成績(jī)(十分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行整理、描述和分析.下面給出了部分信息.
a.A項(xiàng)指標(biāo)成績(jī)的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,,,):
b.A項(xiàng)指標(biāo)成績(jī)?cè)?/span>這一組的是:
7.2 7.3 7.5 7.67 7.7 7.71 7.75 7.82 7.86 7.9 7.92 7.93 7.97
c.兩項(xiàng)指標(biāo)成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)如下:
平均數(shù) | 中位數(shù) | 眾數(shù) | |
A項(xiàng)指標(biāo)成績(jī) | 7.37 | m | 8.2 |
B項(xiàng)指標(biāo)成績(jī) | 7.21 | 7.3 | 8 |
根據(jù)以上信息,回答下列問(wèn)題:
(1)寫(xiě)出表中m的值
(2)在此次調(diào)研評(píng)估中,某企業(yè)A項(xiàng)指標(biāo)成績(jī)和B項(xiàng)指標(biāo)成績(jī)都是7.5分,該企業(yè)成績(jī)排名更靠前的指標(biāo)是______________(填“A”或“B”),理由是_____________;
(3)如果該地區(qū)有500家企業(yè),估計(jì)A項(xiàng)指標(biāo)成績(jī)超過(guò)7.68分的企業(yè)數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,A,B,C均為格點(diǎn).
(1)的面積等于;
(2)請(qǐng)用無(wú)刻度的直尺,在如圖所示的網(wǎng)格中畫(huà)出的角平分線BD,并在AB邊上畫(huà)出點(diǎn)P,使得,并簡(jiǎn)要說(shuō)明的角平分線BD及點(diǎn)P的位置是如何找到的(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AD=4,∠C=30°,⊙O與AD相交于點(diǎn)F,AB為⊙O的直徑,⊙O與CD的延長(zhǎng)線相切于點(diǎn)E,則劣弧FE的長(zhǎng)為_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)院醫(yī)生為了研究該院某種疾病的診斷情況,需要調(diào)查來(lái)院就診的病人的兩個(gè)生理指標(biāo),,于是他分別在這種疾病的患者和非患者中,各隨機(jī)選取20人作為調(diào)查對(duì)象,將收集到的數(shù)據(jù)整理后,繪制統(tǒng)計(jì)圖如下:
注“●”表示患者,“▲”表示非患者.
根據(jù)以上信息,回答下列問(wèn)題:
(1)在這40名被調(diào)查者中,
①指標(biāo)低于0.4的有 人;
②將20名患者的指標(biāo)的平均數(shù)記作,方差記作,20名非患者的指標(biāo)的平均數(shù)記作,方差記作,則 , (填“>”,“=”或“<”);
(2)來(lái)該院就診的500名未患這種疾病的人中,估計(jì)指標(biāo)低于0.3的大約有 人;
(3)若將“指標(biāo)低于0.3,且指標(biāo)低于0.8”作為判斷是否患有這種疾病的依據(jù),則發(fā)生漏判的概率多少.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com