【題目】如圖,在中,點(diǎn)D、E、F分別在邊、、上,且,.下列四種說法:
①四邊形是平行四邊形;②如果,那么四邊形是矩形;
③如果平分,那么四邊形是菱形;
④如果且,那么四邊形是菱形.
其中,正確的有 .(只填寫序號(hào))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形OMN的半徑為1,圓心角為90°,點(diǎn)B是上一動(dòng)點(diǎn),BA⊥OM于點(diǎn)A,BC⊥ON于點(diǎn)C,點(diǎn)D、E、F、G分別是線段OA、AB、BC、CO的中點(diǎn),GF與CE相交于點(diǎn)P,DE與AG相交于點(diǎn)Q.
(1)當(dāng)點(diǎn)B移動(dòng)到使AB:OA=:3時(shí),求的長;
(2)當(dāng)點(diǎn)B移動(dòng)到使四邊形EPGQ為矩形時(shí),求AM的長.
(3)連接PQ,試說明3PQ2+OA2是定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)教材呈現(xiàn):下圖是華師版八年級(jí)上冊(cè)數(shù)學(xué)教材第94頁的部分內(nèi)容.
定理證明:請(qǐng)根據(jù)教材中的分析,結(jié)合圖①,寫出“線段垂直平分線的性質(zhì)定理”完整的證明過程.
定理應(yīng)用:
(2)如圖②,在中,直線、分別是邊、的垂直平分線,直線、的交點(diǎn)為.過點(diǎn)作于點(diǎn).求證:.
(3)如圖③,在中,,邊的垂直平分線交于點(diǎn),邊的垂直平分線交于點(diǎn).若,,則的長為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:
已知:△OAB.
求作:⊙O,使⊙O與△OAB的邊AB相切.
小明的作法如下:
如圖,①取線段OB的中點(diǎn)M;以M為圓心,MO為半徑作⊙M,與邊AB交于點(diǎn)C;
②以O為圓心,OC為半徑作⊙O;
所以,⊙O就是所求作的圓.
請(qǐng)回答:這樣做的依據(jù)是__________________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=7cm,AC=24cm,AB=25cm,P點(diǎn)在BC上,從B點(diǎn)到C點(diǎn)運(yùn)動(dòng)(不包括C點(diǎn)),點(diǎn)P運(yùn)動(dòng)的速度為2cm/s;Q點(diǎn)在AC上從C點(diǎn)運(yùn)動(dòng)到A點(diǎn)(不包括A點(diǎn)),速度為5cm/s.若點(diǎn)P、Q分別從B、C同時(shí)運(yùn)動(dòng),請(qǐng)解答下面的問題,并寫出探索主要過程:
(1)經(jīng)過多少時(shí)間后,P、Q兩點(diǎn)的距離為5cm?
(2)經(jīng)過多少時(shí)間后,的面積為15cm2?
(3)設(shè)運(yùn)動(dòng)時(shí)間為t,用含t的代數(shù)式表示△PCQ的面積,并用配方法說明t為何值時(shí)△PCQ的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC⊥BD交BD于點(diǎn)E,點(diǎn)F、M分別是AB、BC的中點(diǎn),BN平分∠ABE交AM于點(diǎn)N,AB=AC=BD,連接MF,NF
求證:(1)BN=MN;
(2)△MFN∽△BDC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點(diǎn)C.
(1)若點(diǎn)A(0,6),N(0,2),∠ABN=30°,求點(diǎn)B的坐標(biāo);
(2)若D為線段NB的中點(diǎn),求證:直線CD是⊙M的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在7×7網(wǎng)格中,每個(gè)小正方形的邊長都為1.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系后,若點(diǎn)A(1,3)、C(2,1),則點(diǎn)B的坐標(biāo)為______;
(2)△ABC的面積為______;
(3)判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線的解析表達(dá)式為,且與軸交于點(diǎn).直線經(jīng)過點(diǎn),直線交于點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)求直線的解析表達(dá)式;
(3)在軸上求作一點(diǎn),使的和最小,直接寫出的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com