【題目】如圖①是一塊瓷磚的圖案用這種瓷磚來鋪設(shè)地面如果鋪成一個(gè)2×2的正方形圖案(如圖②),其中完整的圓共有5個(gè),如果鋪成一個(gè)3×3的正方形圖案(如圖③),其中完整的圓共有13個(gè),如果鋪成一個(gè)4×4的正方形圖案(如圖④),其中完整的圓共有25個(gè),若這樣鋪成一個(gè)15×15的正方形圖案,則其中完整的圓共有( 。﹤(gè).

A.365B.366C.420D.421

【答案】D

【解析】

根據(jù)給出的四個(gè)圖形的規(guī)律可以知道,組成大正方形的每個(gè)小正方形上有一個(gè)完整的圓,因此圓的數(shù)目是大正方形邊長的平方,每四個(gè)小正方形組成一個(gè)完整的圓,從而可得這樣的圓是大正方形邊長減1的平方,從而可得若這樣鋪成一個(gè)15×15的正方形圖案,則其中完整的圓共有2×1522×15+1421個(gè).

解:分析可得:組成大正方形的每個(gè)小正方形上有一個(gè)完整的圓,因此圓的數(shù)目是大正方形邊長的平方,即為n2;

又每四個(gè)小正方形組成一個(gè)完整的圓,這樣的圓的個(gè)數(shù)是大正方形邊長減1的平方,即為(n12,

∴若這樣鋪成一個(gè)n×n的正方形圖案,所得到的完整圓的個(gè)數(shù)共有:n2+n122n22n+1

當(dāng)n15時(shí),2×1522×15+1421

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把兩個(gè)全等的等腰直角三角板ABCEFG(其直角邊長均為4)疊放在一起(如圖1),且使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合,現(xiàn)將三角板EFGO點(diǎn)順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角滿足條件四邊形CHGK是旋轉(zhuǎn)過程中兩三角板的重疊部分(如圖2).

(1)在上述旋轉(zhuǎn)過程中,BHCK有怎樣的數(shù)量關(guān)系?證明你的結(jié)論;

(2)在上述旋轉(zhuǎn)過程中,兩個(gè)直角三角形的重疊部分面積是否會發(fā)生改變?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】讀句畫圖并完成計(jì)算:如圖,直線AB與直線CD交于點(diǎn)C ,

(1)過點(diǎn)PPQCD,交AB于點(diǎn)Q

(2)PPRCD于點(diǎn)R;

(3)若∠DCB=150,求∠PQC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣44),點(diǎn)B的坐標(biāo)為(02).

1)求直線AB的解析式;

2)如圖,以點(diǎn)A為直角頂點(diǎn)作∠CAD90°,射線ACx軸于點(diǎn)C,射線ADy軸于點(diǎn)D.當(dāng)∠CAD繞著點(diǎn)A旋轉(zhuǎn),且點(diǎn)Cx軸的負(fù)半軸上,點(diǎn)Dy軸的負(fù)半軸上時(shí),OCOD的值是否發(fā)生變化?若不變,求出它的值;若變化,求出它的變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:∠MON30°,點(diǎn)A1、A2、A3在射線ON上,點(diǎn)B1、B2B3在射線OM上,A1B1A2、A2B2A3、A3B3A4均為等邊三角形,若OA11,則A7B7A8的邊長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小張準(zhǔn)備購買一套新房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:

1)寫出用含x、y的代數(shù)式表示的地面總面積;

2)若x5,y1.5,鋪設(shè)1m2地磚的平均費(fèi)用為180元,則鋪地磚的總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號的設(shè)備可供選購. 經(jīng)調(diào)查:購買3臺甲型設(shè)備比購買2臺乙型設(shè)備多花16萬元,購買2臺甲型設(shè)備比購買3臺乙型設(shè)備少花6萬元.

(1)求甲、乙兩種型號設(shè)備的價(jià)格;

(2)該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認(rèn)為該公司有哪幾種購買方案;

(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請你為該公司設(shè)計(jì)一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAD=∠CAE=90o,AB=AD,AE=AC, AF⊥CF,垂足為F.

(1)若AC=10,求四邊形ABCD的面積;

(2)求證:AC平分∠ECF;

(3)求證:CE=2AF .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,直線y=12x+2交坐標(biāo)軸于A,B兩點(diǎn).以AB為斜邊在第一象限作等腰直角三角形ABC,C為直角頂點(diǎn),連接OC

1)求線段AB的長度

2)求直線BC的解析式;

3)如圖②,將線段ABB點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)至BD,且,直線DO交直線y=x+3P點(diǎn),求P點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案