(2013年四川資陽3分)如圖,在Rt△ABC中,∠C=90°,∠B=60°,點D是BC邊上的點,CD=1,將△ABC沿直線AD翻折,使點C落在AB邊上的點E處,若點P是直線AD上的動點,則△PEB的周長的最小值是

    

 

 

【答案】

1+。

【解析】連接CE,交AD于M,

∵沿AD折疊C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD。

∴AD垂直平分CE,即C和E關(guān)于AD對稱,CD=DE=1。

∴當(dāng)P和D重合時,PE+BP的值最小,即可此時△BPE的周長最小,最小值是BE+PE+PB=BE+CD+DE=BC+BC。

∵∠DEA=90°,∴∠DEB=90°。

∵∠B=60°,DE=1,∴BE=,BD=,即BC=1+。

∵∠ACB=90°,∠B=60°,∴∠CAB=30°。

∴AB=2BC=2×(1+)=2+。AC=BC=+2。

∴BE=AB﹣AE=2+﹣(+2)=。

∴△PEB的周長的最小值是BC+BE=1++=1+。

考點:翻折變換(折疊問題),單動點問題,軸對稱的應(yīng)用(最短路線問題),含30度角的直角三角形的性質(zhì)。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川資陽卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川資陽11分)在一個邊長為a(單位:cm)的正方形ABCD中,點E、M分別是線段AC,CD上的動點,連結(jié)DE并延長交正方形的邊于點F,過點M作MN⊥DF于H,交AD于N.

(1)如圖1,當(dāng)點M與點C重合,求證:DF=MN;

(2)如圖2,假設(shè)點M從點C出發(fā),以1cm/s的速度沿CD向點D運動,點E同時從點A出發(fā),以cm/s速度沿AC向點C運動,運動時間為t(t>0);

①判斷命題“當(dāng)點F是邊AB中點時,則點M是邊CD的三等分點”的真假,并說明理由.

②連結(jié)FM、FN,△MNF能否為等腰三角形?若能,請寫出a,t之間的關(guān)系;若不能,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川資陽卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川資陽9分)釣魚島歷來是中國領(lǐng)土,以它為圓心在周圍12海里范圍內(nèi)均屬于禁區(qū),不允許它國船只進(jìn)入,如圖,今有一中國海監(jiān)船在位于釣魚島A正南方距島60海里的B處海域巡邏,值班人員發(fā)現(xiàn)在釣魚島的正西方向52海里的C處有一艘日本漁船,正以9節(jié)的速度沿正東方向駛向釣魚島,中方立即向日本漁船發(fā)出警告,并沿北偏西30°的方向以12節(jié)的速度前往攔截,期間多次發(fā)出警告,2小時候海監(jiān)船到達(dá)D處,與此同時日本漁船到達(dá)E處,此時海監(jiān)船再次發(fā)出嚴(yán)重警告.

(1)當(dāng)日本漁船受到嚴(yán)重警告信號后,必須沿北偏東轉(zhuǎn)向多少度航行,才能恰好避免進(jìn)入釣魚島12海里禁區(qū)?

(2)當(dāng)日本漁船不聽嚴(yán)重警告信號,仍按原速度,原方向繼續(xù)前進(jìn),那么海監(jiān)船必須盡快到達(dá)距島12海里,且位于線段AC上的F處強制攔截漁船,問海監(jiān)船能否比日本漁船先到達(dá)F處?(注:①中國海監(jiān)船的最大航速為18節(jié),1節(jié)=1海里/小時;②參考數(shù)據(jù):sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,≈1.4,≈1.7)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川資陽卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川資陽9分)如圖,已知直線l分別與x軸、y軸交于A,B兩點,與雙曲線(a≠0,x>0)分別交于D、E兩點.

(1)若點D的坐標(biāo)為(4,1),點E的坐標(biāo)為(1,4):

①分別求出直線l與雙曲線的解析式;

②若將直線l向下平移m(m>0)個單位,當(dāng)m為何值時,直線l與雙曲線有且只有一個交點?

(2)假設(shè)點A的坐標(biāo)為(a,0),點B的坐標(biāo)為(0,b),點D為線段AB的n等分點,請直接寫出b的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川資陽卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川資陽8分)在⊙O中,AB為直徑,點C為圓上一點,將劣弧沿弦AC翻折交AB于點D,連結(jié)CD.

(1)如圖1,若點D與圓心O重合,AC=2,求⊙O的半徑r;

(2)如圖2,若點D與圓心O不重合,∠BAC=25°,請直接寫出∠DCA的度數(shù).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川資陽卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川資陽8分)在關(guān)于x,y的二元一次方程組中.

(1)若a=3.求方程組的解;

(2)若S=a(3x+y),當(dāng)a為何值時,S有最值.

 

查看答案和解析>>

同步練習(xí)冊答案