【題目】解方程組:(1)+-4=0 ;(2)
【答案】(1),;(2),.
【解析】
(1)先去分母,將分式方程化為一元二次方程,然后解答即可,注意分式方程驗(yàn)根;
(2)先設(shè)=m,=n,則x=m2-1,y=n2+2,然后將方程化為一元二次方程,然后解答即可.
解:(1)去分母,得x2+(1-x)(3-3x)-4x(1-x)=0,
去括號(hào),得x2+3-3x-3x+3x2-4x+4x2=0,
合并同類項(xiàng),得8x2-10x+3=0,
分解因式,得(2x-1)(4x-3)=0,
∴2x-1=0或4x-3=0,
∴x1=,x2=,
檢驗(yàn):將x1=代入分式方程,左邊=0=右邊,
將x2=代入分式方程,左邊=0=右邊,
因此x1=,x2=是分式方程的根.
所以原分式方程的根為x1=,x2=;
(2)設(shè)=m,=n,則x=m2-1,y=n2+2,
原方程組可化為
由①,得m =5-n③
③代入②,得(5-n)2+n2=13,
整理,得2n2-10n+12=0,
即n2-5n+6=0,
解這個(gè)方程,得n =2或3,
∴
∴原方程組的解為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點(diǎn),分別是,的中點(diǎn),點(diǎn)為射線上一動(dòng)點(diǎn),連結(jié),作交射線于點(diǎn).
(1)當(dāng)點(diǎn)在線段上時(shí),求與的大小關(guān)系;
(2)當(dāng)等于多少時(shí),是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,過點(diǎn)B的直線MN∥AC,D為BC邊上一點(diǎn),連接AD,作DE⊥AD交MN于點(diǎn)E,連接AE.
(1)如圖①,當(dāng)∠ABC=45°時(shí),求證:AD=DE;理由;
(2)如圖②,當(dāng)∠ABC=30°時(shí),線段AD與DE有何數(shù)量關(guān)系?并請(qǐng)說明理由;
(3)當(dāng)∠ABC=α時(shí),請(qǐng)直接寫出線段AD與DE的數(shù)量關(guān)系.(用含α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=60°,BC=2,CD是△ABC的一條高線.若E,F(xiàn)分別是CD和BC上的動(dòng)點(diǎn),則BE+EF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,為直線上一動(dòng)點(diǎn)(不與端點(diǎn)重合),以為直角邊在右側(cè)作等腰直角三角形連接.
(1)如圖①,當(dāng)點(diǎn)在線段上時(shí),線段和的數(shù)量關(guān)系為 ;
(2)如圖②,當(dāng)點(diǎn)在線段延長(zhǎng)線上時(shí),線段和之間又有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給予證明;
(3)如圖③,當(dāng)點(diǎn)在線段反向延長(zhǎng)線上時(shí),且點(diǎn)分別在直線的兩側(cè),請(qǐng)直接寫出線段和的數(shù)量關(guān)系為 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為1,AB、AD上各有一點(diǎn)P、Q,如果的周長(zhǎng)為2,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=65°,BC=6,以BC為直徑的半圓O與AB、AC分別交于點(diǎn)D、E,則圖中由O、D、E三點(diǎn)所圍成的扇形面積等于_____.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織數(shù)學(xué)興趣探究活動(dòng),愛思考的小實(shí)同學(xué)在探究?jī)蓷l直線的位置關(guān)系查閱資料時(shí)發(fā)現(xiàn),兩條中線互相垂直的三角形稱為“中垂三角形”.如圖1、圖2、圖3中,、是的中線,于點(diǎn),像這樣的三角形均稱為“中垂三角形”.
(特例探究)
(1)如圖1,當(dāng),時(shí),_____,______;
如圖2,當(dāng),時(shí),_____,______;
(歸納證明)
(2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想、、三者之間的關(guān)系,用等式表示出來,并利用圖3證明你的結(jié)論;
(拓展證明)
(3)如圖4,在中,,,、、分別是邊、的中點(diǎn),連結(jié)并延長(zhǎng)至,使得,連結(jié),當(dāng)于點(diǎn)時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于邊形,甲、乙、丙三位同學(xué)有以下三種說法:
甲:五邊形的內(nèi)角和為
乙:正六邊形每個(gè)內(nèi)角為
丙:七邊形共有對(duì)角線14條
(1)判斷三種說法是否正確,并對(duì)其中你認(rèn)為不對(duì)的說法用計(jì)算進(jìn)行說明
(2)若邊形的對(duì)角線共35條,求該邊形的內(nèi)角和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com