【題目】旅客乘車按規(guī)定可隨身攜帶一定重量的行李,如果超過規(guī)定,那么需購買行李票,設(shè)行李費(元)是行李重量的函數(shù),其圖像如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)旅客最多可免費攜帶行李的重量;
(3)某旅客所買的行李票的費用為415元,求他所帶行李的質(zhì)量范圍.
【答案】(1)y=x6;(2)最多可免費攜帶30千克行李;(3)50x105千克.
【解析】
(1)根據(jù)函數(shù)圖象直接運用待定系數(shù)法就可以求出函數(shù)關(guān)系式;
(2)當y=0時帶入函數(shù)的解析式就可以x的值,從而得到結(jié)論;
(3)將y的解析式帶入4≤y≤15,求出x的值就可以得出結(jié)論.
(1)設(shè)y與x之間的函數(shù)關(guān)系式為:y=kx+b,
由題意,得 ,解得: ,
故y與x之間的函數(shù)關(guān)系式為y=x6;
(2)當y=0時,0=x6,
解得x=30.
故旅客最多可免費攜帶30千克行李;
(3)由題意,得
4x615,
解得:50x105.
故他所帶行李的質(zhì)量范圍是:50x105千克.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東66.1°方向,距離燈塔120海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B處,求BP和BA的長(結(jié)果取整數(shù)).
參考數(shù)據(jù):sin66.1°≈0.91,cos66.1°≈0.41,tan64°≈2.26,取1.414.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知⊙O的半徑為1,PQ是⊙O的直徑,n個相同的正三角形沿PQ排成一列,所有正三角形都關(guān)于PQ對稱,其中第一個△A1B1C1的頂點A1與點P重合,第二個△A2B2C2的頂點A2是B1C1與PQ的交點……最后一個△AnBnCn的頂點Bn,Cn在圓上.
(1)如圖②,當n=1時,求正三角形的邊長a1.
(2)如圖③,當n=2時,求正三角形的邊長a2.
(3)如圖①,求正三角形的邊長an(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:AB是⊙O的直徑,AC交⊙O于G,E是AG上一點,D為△BCE內(nèi)心,BE交AD于F,且∠DBE=∠BAD.
(1)求證:BC是⊙O的切線;
(2)求證:DF=DG;
(3)若∠ADG=45°,DF=1,則有兩個結(jié)論:①ADBD的值不變;②AD-BD的值不變,其中有且只有一個結(jié)論正確,請選擇正確的結(jié)論,證明并求其值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,2),則B2的坐標為_____;點B2016的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點A作AB⊥x軸,垂足為點A,過點C作CB⊥y軸,垂足為點C,兩條垂線相交于點B.
(1)線段AB,BC,AC的長分別為AB= ,BC= ,AC= ;
(2)折疊圖1中的△ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DE交AB于點D,交AC于點E,連接CD,如圖2.
請從下列A、B兩題中任選一題作答,我選擇 題.
A:①求線段AD的長;
②在y軸上,是否存在點P,使得△APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標;若不存在,請說明理由.
B:①求線段DE的長;
②在坐標平面內(nèi),是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A'B'C'.若∠A=40°,∠B'=110°,∠BCA'的度數(shù)是( )
A.110°B.80°C.40°D.30°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過軸正半軸上的任意一點,作軸的平行線,分別與反比例函數(shù)和的圖象交于點和點,點是軸上一點,連接、,則的面積為( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知四邊形ABCD是平行四邊形,∠C=70°,若AF、BE分別為∠DAB、∠CBA的平分線.
求證:(1)DF=EC;(2)求∠DFA的大小。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com