如圖,以矩形ABCD的頂點(diǎn)A為原點(diǎn),AD所在的直線為x軸,AB所在的直線為y軸,建立平面直角坐標(biāo)系.點(diǎn)D的坐標(biāo)為(8,0),點(diǎn)B的坐標(biāo)為(0,6),點(diǎn)F在對角線AC上運(yùn)動(點(diǎn)F不與點(diǎn)A、C重合),過點(diǎn)F分別作x軸、y軸的垂線,垂足為G、E.設(shè)四邊形BCFE的面積為S1,四邊形CDGF的面積為S2,△AFG的面積為S3.
(1)試判斷S1、S2,的關(guān)系,并加以證明;
(2)當(dāng)S3:S1=1:3時,求點(diǎn)F的坐標(biāo);
(3)如圖,在(2)的條件下,把△AEF沿對角線AC所在直線平移,得到△A’E’F’,且A’、F’兩點(diǎn)始終在直線AC上,是否存在這樣的點(diǎn)E’,使點(diǎn)E’到x軸的距離與到y(tǒng)軸的距離比是5:4.若存在,請求出點(diǎn)E’的坐標(biāo);若不存在,請說明理由.
(1)S1=S2;(2)F(4,3);(3)存在滿足條件的E′坐標(biāo)分別是( 6,) (,)
【解析】
試題分析:(1)兩者應(yīng)該相等,由于四邊形ADCB是矩形,那么對角線平分矩形的面積,同理OF也平分矩形AEFG的面積,由此就不難得出S1=S2了;
(2)S3:S2=1;3,也就能得出S△AGF:S△ADC=1:4,根據(jù)相似三角形的面積比等于相似比的平方,可得出OF:OC=1:2,即F為OC中點(diǎn).由此可根據(jù)C、D的坐標(biāo)直接求出F的坐標(biāo);
(3)由于A′F′始終在OC上,因此EE′所在的直線必平行于OC,可先求出直線EE′的解析式,然后根據(jù)E′橫、縱坐標(biāo)的比例關(guān)系來設(shè)出E′的坐標(biāo),代入直線EE′中即可求出E′A的坐標(biāo).
(1)S1=S2
∵FE⊥y軸,F(xiàn)G⊥x軸,∠BAD=90°,
∴四邊形AEFG是矩形.
∴AE=GF,EF=AG.
∴S△AEF=S△AFG,
同理S△ABC=S△ACD.
∴S△ABC-S△AEF=S△ACD-S△AFG.
即S1=S2.
(2)∵FG∥CD,
∴△AFG∽△ACD.
∵CD=BA=6,AD=BC=8,
∴FG=3,AG=4.
∴F(4,3);
(3)∵△A′E′F′是由△AEF沿直線AC平移得到的,且A′、F′兩點(diǎn)始終在直線AC上,
∴點(diǎn)E′在過點(diǎn)E(0,3)且與直線AC平行的直線l上移動.
∵直線AC的解析式是y=x,
∴直線L的解析式是y=x+3.
設(shè)點(diǎn)E′為(x,y),
∵點(diǎn)E′到x軸的距離與到y(tǒng)軸的距離比是5:4,
∴|y|:|x|=5:4.
∴E′(6,7.5);
∴存在滿足條件的E′坐標(biāo)分別是( 6,) (,).
考點(diǎn):動點(diǎn)問題的綜合題
點(diǎn)評:此類問題難度較大,在中考中比較常見,一般在壓軸題中出現(xiàn),需特別注意.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(四川成都卷)數(shù)學(xué)解析版 題型:解答題
(2011•成都)已知:如圖,以矩形ABCD的對角線AC的中點(diǎn)O為圓心,OA長為半徑作⊙O,⊙O經(jīng)過B、D兩點(diǎn),過點(diǎn)B作BK⊥AC,垂足為K.過D作DH∥KB,DH分別與AC、AB、⊙O及CB的延長線相交于點(diǎn)E、F、G、H.
(1)求證:AE=CK;
(2)如果AB=a,AD=(a為大于零的常數(shù)),求BK的長:
(3)若F是EG的中點(diǎn),且DE=6,求⊙O的半徑和GH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com