【題目】已知關(guān)于的一元二次方程有實數(shù)根.
(1)求實數(shù)m的取值范圍;
(2)當(dāng)m=2時,方程的根為,求代數(shù)式的值.
【答案】(1);(2)1.
【解析】
(1)根據(jù)△≥0,解不等式即可;
(2)將m=2代入原方程可得:x2+3x+1=0,計算兩根和與兩根積,化簡所求式子,可得結(jié)論.
(1)△=
∵原方程有實根,∴△=
解得
(2)當(dāng)m=2時,方程為x2+3x+1=0,
∴x1+x2=-3,x1x2=1,
∵方程的根為x1,x2,
∴x12+3x1+1=0,x22+3x2+1=0,
∴(x12+2x1)(x22+4x2+2)
=(x12+2x1+x1-x1)(x22+3x2+x2+2)
=(-1-x1)(-1+x2+2)
=(-1-x1)(x2+1)
=-x2-x1x2-1-x1
=-x2-x1-2
=3-2
=1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)揚州市體育中考現(xiàn)場考試內(nèi)容有三項:50米跑為必測項目;另在立定跳遠、實心球(二選一)和坐位體前屈、1分鐘跳繩(二選一)中選擇兩項.
(1)每位考生有__________種選擇方案;
(2)用畫樹狀圖或列表的方法求小明與小剛選擇同種方案的概率.(友情提醒:各種主案用、…或①、②、③、…等符號來代表可簡化解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,的頂點A在格點上,B是小正方形邊的中點,,,經(jīng)過點A,B的圓的圓心在邊AC上.
(Ⅰ)線段AB的長等于_______________;
(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中,畫出一個點P,使其滿足,并簡要說明點P的位置是如何找到的(不要求證明)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩名射擊選手中選出一名選手參加省級比賽,現(xiàn)對他們分別進行5次射擊測試,成績分別為(單位:環(huán))
甲:5、6、7、9、8
乙:8、4、8、6、9
(1)分別計算這兩組數(shù)據(jù)的平均數(shù)和方差;
(2)根據(jù)測試成績,你認為選派哪一名選手參賽更好些?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線(是常數(shù)),,頂點坐標(biāo)為.給出下列結(jié)論:①若點與點在該拋物線上,當(dāng)時,則;②關(guān)于的一元二次方程無實數(shù)解,那么( )
A.①正確,②正確B.①正確,②錯誤C.①錯誤,②正確D.①錯誤,②錯誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在△ABC中,AB=AC.
(1)用尺規(guī)作圖法在AC邊上找一點D,使得BD=BC(保留作圖痕跡,不要求寫作法):
(2)若∠A=30°,求∠ABD的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年5月,某大型商業(yè)集團隨機抽取所屬的m家商業(yè)連鎖店進行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.
評估成績n(分) | 評定等級 | 頻數(shù) |
90≤n≤100 | A | 2 |
80≤n<90 | B | |
70≤n<80 | C | 15 |
n<70 | D | 6 |
根據(jù)以上信息解答下列問題:
(1)求m的值;
(2)在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大小;(結(jié)果用度、分、秒表示)
(3)從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是A等級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1) 請畫出△ABC向左平移5個單位長度后得到的△ABC;
(2) 請畫出△ABC關(guān)于原點對稱的△ABC;
(3) 在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l2:與x軸交于點A;與y軸交于點B,以x軸為對稱軸作直線的軸對稱圖形的直線l2,點A1,A2,A3…在直線l1上,點B1,B2,B3…在x正半軸上,點C1,C2,C3…在直線l2上,若△A1B1O、△A2B2B1、△A2B1B2、…△AnBnBn﹣1均為等邊三角形,四邊形A1B1C1O、四邊形A2B2C2B1、四邊形A2B1C2B2…、四邊形AnBnnBn﹣1的面積分別是S1、S2、S3、…、Sn,則Sn為_____.(用含有n的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com