【題目】已知關(guān)于的一元二次方程有實數(shù)根.

1)求實數(shù)m的取值范圍;

2)當(dāng)m=2時,方程的根為,求代數(shù)式的值.

【答案】1;(21.

【解析】

1)根據(jù)≥0,解不等式即可;
2)將m=2代入原方程可得:x2+3x+1=0,計算兩根和與兩根積,化簡所求式子,可得結(jié)論.

1=

∵原方程有實根,∴△=

解得

2)當(dāng)m=2時,方程為x2+3x+1=0,
x1+x2=-3,x1x2=1,
∵方程的根為x1x2,
x12+3x1+1=0x22+3x2+1=0,
∴(x12+2x1)(x22+4x2+2
=x12+2x1+x1-x1)(x22+3x2+x2+2
=-1-x1)(-1+x2+2
=-1-x1)(x2+1
=-x2-x1x2-1-x1
=-x2-x1-2
=3-2
=1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)揚州市體育中考現(xiàn)場考試內(nèi)容有三項:50米跑為必測項目;另在立定跳遠、實心球(二選一)和坐位體前屈、1分鐘跳繩(二選一)中選擇兩項.

1)每位考生有__________種選擇方案;

2)用畫樹狀圖或列表的方法求小明與小剛選擇同種方案的概率.(友情提醒:各種主案用、、等符號來代表可簡化解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,的頂點A在格點上,B是小正方形邊的中點,,經(jīng)過點AB的圓的圓心在邊AC上.

(Ⅰ)線段AB的長等于_______________;

(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中,畫出一個點P,使其滿足,并簡要說明點P的位置是如何找到的(不要求證明)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩名射擊選手中選出一名選手參加省級比賽,現(xiàn)對他們分別進行5次射擊測試,成績分別為(單位:環(huán))

甲:5、6、7、9、8

乙:8、4、8、6、9

(1)分別計算這兩組數(shù)據(jù)的平均數(shù)和方差;

(2)根據(jù)測試成績,你認為選派哪一名選手參賽更好些?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線是常數(shù)),,頂點坐標(biāo)為.給出下列結(jié)論:①若點與點在該拋物線上,當(dāng)時,則;②關(guān)于的一元二次方程無實數(shù)解,那么(

A.①正確,②正確B.①正確,②錯誤C.①錯誤,②正確D.①錯誤,②錯誤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在△ABC中,ABAC

1)用尺規(guī)作圖法在AC邊上找一點D,使得BDBC(保留作圖痕跡,不要求寫作法):

2)若∠A30°,求∠ABD的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月,某大型商業(yè)集團隨機抽取所屬的m家商業(yè)連鎖店進行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.

評估成績n(分

評定等級

頻數(shù)

90≤n≤100

A

2

80≤n<90

B

70≤n<80

C

15

n<70

D

6

根據(jù)以上信息解答下列問題:

(1求m的值;

(2在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大小;(結(jié)果用度、分、秒表示

(3從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是A等級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).

(1) 請畫出ABC向左平移5個單位長度后得到的ABC;

(2) 請畫出ABC關(guān)于原點對稱的ABC

(3) 在軸上求作一點P,使PAB的周長最小,請畫出PAB,并直接寫P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l2x軸交于點A;與y軸交于點B,以x軸為對稱軸作直線的軸對稱圖形的直線l2,點A1,A2,A3…在直線l1上,點B1,B2B3…在x正半軸上,點C1C2,C3…在直線l2上,若△A1B1O、△A2B2B1、△A2B1B2、…△AnBnBn1均為等邊三角形,四邊形A1B1C1O、四邊形A2B2C2B1、四邊形A2B1C2B2…、四邊形AnBnnBn1的面積分別是S1S2、S3、…、Sn,則Sn_____.(用含有n的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊答案