【題目】已知等腰RtABCBAC=90°,AB=AC,點(diǎn)DABC內(nèi)部一點(diǎn),連接AD、BDCD,點(diǎn)HBD中點(diǎn),連接AH,且BAH=∠ACD

(1)如圖1,若ADB=90°,求證:DAH=45°;

(2)如圖2,若ADB90°(1)問(wèn)中的結(jié)論是否成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

【答案】1)證明見(jiàn)解析;(2)成立.

【解析】

1)用ASA證明△ABH≌△CAD,得到BH=AD,即AD=HD,得到△AHD是等腰直角三角形,即可得出結(jié)論;

2)延長(zhǎng)AHE,使HE=AH,連接DE.延長(zhǎng)CDABF,交AHG.通過(guò)證明△ABH≌△EDH和△EGD≌△CGA,得到△AGD為等腰直角三角形,即可得出結(jié)論.

1)∵∠BAC=90°,∴∠CAD+BAD=90°.

∵∠ADB=90°,∴∠ABH+BAD=90°,∴∠CAD=ABH

在△ABH和△CAD中,∵∠BAH=ACD,AB=CA,∠ABH=CAD,∴△ABH≌△CADASA),∴BH=AD

HBD的中點(diǎn),∴BH=HD,∴AD=HD,∴△AHD是等腰直角三角形,∴∠DAH=45°.

2)成立.理由如下:

如圖,延長(zhǎng)AHE,使HE=AH,連接DE.延長(zhǎng)CDABF,交AHG

BH=DH,∠BHA=DHE,AH=EH,∴△ABH≌△EDH,∴AB=ED,∠1=E

AB=AC,∴ED=AC

∵∠1=2,∴∠E=2

∵∠BAC=90°,∴∠1+GAC=90°.

∵∠1=2,∴∠2+GAC=90°,∴∠AGC=90°,∴∠EGD=CGA=90°.

在△EGD和△CGA中,∵∠E=2,∠EGD=CGA,ED=CA,∴△EGD≌△CGAAAS),∴GD=GA,∴△AGD為等腰直角三角形,∴∠DAH=45°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查小組采用簡(jiǎn)單隨機(jī)抽樣方法,對(duì)某市部分中小學(xué)生一天中陽(yáng)光體育運(yùn)動(dòng)時(shí)間進(jìn)行了抽樣調(diào)查,并把所得數(shù)據(jù)整理后繪制成如下的統(tǒng)計(jì)圖:

(1)該調(diào)查小組抽取的樣本容量是多少?
(2)求樣本學(xué)生中陽(yáng)光體育運(yùn)動(dòng)時(shí)間為1.5小時(shí)的人數(shù),并補(bǔ)全占頻數(shù)分布直方圖;
(3)請(qǐng)估計(jì)該市中小學(xué)生一天中陽(yáng)光體育運(yùn)動(dòng)的平均時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在Rt△ABC中,∠C=90°,c為斜邊,a、b為直角邊,則化簡(jiǎn) 的結(jié)果為( )
A.3a+b﹣c
B.﹣a﹣3b+3c
C.a+3b﹣3c
D.2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果商店經(jīng)銷(xiāo)一種蘋(píng)果,共有20筐,以每筐25千克為標(biāo)準(zhǔn),超過(guò)或不足的千克數(shù)分別用正、負(fù)數(shù)來(lái)表示,記錄如表:

與標(biāo)準(zhǔn)質(zhì)量的差值(單位;千克)

-3

-2

-1.5

0

1

2.5

筐數(shù)

1

4

2

3

2

8

1)這20筐蘋(píng)果中,最重的一筐比最輕的一筐多重多少千克?

2)與標(biāo)準(zhǔn)重量比較,這20筐蘋(píng)果總計(jì)超過(guò)或不足多少千克?

3)若蘋(píng)果每千克售價(jià)元,則出售這20筐蘋(píng)果可賣(mài)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:小明遇到這樣一個(gè)問(wèn)題:

如圖1,ABC,B=2C,ADBC于點(diǎn)D,求證:BC=AB+2BD.

小明利用條件ADBC,CD上截取DH=BD,如圖2,連接AH,既構(gòu)造了等腰ABH,又得到BH=2BD,從而命題得證。

(1)根據(jù)閱讀材料,證明:BC=AB+2BD;

(2)參考小明的方法,解決下面的問(wèn)題:

如圖3,ABC,BAC=90°,ABD=BCE,ABC=DCE,請(qǐng)?zhí)骄?/span>ADBE的數(shù)量關(guān)系,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)如圖,△ABC中,邊AB、AC的垂直平分線(xiàn)分別交BCD、E.

(1)若BC=10,則△ADE周長(zhǎng)是多少?為什么?

(2)若∠BAC=128°,則∠DAE的度數(shù)是多少?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)先化簡(jiǎn),再求值:(x-3)2+2(x-2)(x+7)-(x+2)(x-2);其中x2+2x-3=0

2)已知,求: 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).

(1)畫(huà)出△ABC向下平移4個(gè)單位長(zhǎng)度得到的△A1B1C1
(2)點(diǎn)C1的坐標(biāo)是;
(3)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫(huà)出△A2B2C2 ,
(4)使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在半徑為 的⊙O中,AB,CD是互相垂直的兩條弦,垂足為P,且AB=CD=4,則OP的長(zhǎng)為( )

A.1
B.
C.2
D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案