【題目】已知菱形中,為對角線,點的中點,連接于點,的垂直平分線于點,交于點,連接.

1)若,求證:四邊形是正方形

2)已知,求的長;

3)若固定,設,將繞著點從點開始逆時針旋轉過程中,菱形也隨之變化,且滿足,若是直角三角形,直接寫出的值;

【答案】1)證明見解析;(2;(3

【解析】

1)由菱形的性質(zhì)可得,由垂直平分線的性質(zhì)可得,,由等邊對等角可得:,等量代換可得,由平行線的判定及性質(zhì)可得,90°,繼而由正方形的判定求證結論;

2)由菱形的性質(zhì)可知,,由相似三角形的判定可得,繼而由相似三角形對應邊成比例的性質(zhì)可得:,根據(jù)題(1)可知,進而可證△BGE∽△BAD,由此可知,代入數(shù)據(jù),求出,最后由線段垂直平分線的性質(zhì)求解;

3)根據(jù)題意,從旋轉過程中可看出,線段在旋轉360°的過程中,增大到90°再減小到再增加到90°再到,據(jù)此結合圖形即可求解.

解:(1)∵四邊形是菱形

,∴,∵的垂直平分線交于點

,∴,∴

,

∵四邊形是菱形

∴四邊形是正方形

2)∵四邊形是菱形

,∴;

∴△BGE∽△BAD,∴

的垂直平分線交于點

3)若是直角三角形時的值可能是60°,90°,270°300°

∵從旋轉過程中可看出,線段在旋轉360°的過程中,增大到90°再減小到再增加到90°再到

∴第一次出現(xiàn)是直角三角形時,如圖1所示,此時的一半,可得旋轉角度60°;第二次出現(xiàn)是直角三角形時,如圖2所示,此時(1)中已證明旋轉角度90°;當繼續(xù)旋轉時到達的下方,同理可得旋轉角度270°300°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知圓錐的高為,母線為,且,圓錐的側面展開圖為如圖所示的扇形.將扇形沿折疊,使點恰好落在上的點,則弧長與圓錐的底面周長的比值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:

1)如圖1,在△ABC和△CDE中,ABAC,ECED,∠BAC=∠CED,請在圖中作出與△BCD相似的三角形.

遷移應用:

2)如圖2E為正方形ABCD內(nèi)一點,∠DEB135°,在DE上取一點G,使得BEEG,延長BEAG于點F,求AFFG的值.

聯(lián)系拓展:

3)矩形ABCD中,AB6,AD8,P、E分別是ACBC上的點,且四邊形PEFD為矩形,若△PCD是等腰三角形時,直接寫出CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某中學學生課余活動情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計,現(xiàn)從該校隨機抽取名學生作為樣本,采用問卷調(diào)查的方式收集數(shù)據(jù)(參與問卷調(diào)查的每名學生只能選擇其中--項),并據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中提供的信息,解答下列問題:

(1) ,直接補全條形統(tǒng)計圖;

(2)若該校共有學生名,試估計該校喜愛看課外書的學生人數(shù);

(3)若被調(diào)查喜愛體育活動的名學生中有名男生和名女生,現(xiàn)從這名學生中任意抽取名,請用列表或畫樹狀圖的方法求恰好抽到名男生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為做好新型肺炎疫情防控,某社區(qū)開展新型肺炎疫情排查與宣傳教育志愿服務活動,組織社區(qū)20名志愿者隨機平均分配在4個院落門甲、乙、丙、丁處值守,并對進出人員進行測溫度、勸導佩戴口罩、正確投放生活垃圾等服務.

1)志愿者小明被分配到甲處服務是( )事件;

A.不可能事件 B.可能事件 C.必然事件 D.無法確定

2)請用列表或樹狀圖的方法,求出志愿者小明和小紅被隨機分配到同一處服務的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,B,DE為格點,C,的延長線的交點.

(Ⅰ)的結果為_________________.

(Ⅱ)若點R在線段上,點S在線段上,點T在線段上,且滿足四邊形為菱形,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出菱形,并簡要說明點R,S,T的位置是如何找到的(不要求證明)____________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點的坐標為,且,拋物線圖象經(jīng)過三點.

1)求兩點的坐標;

2)求拋物線的解析式;

3)若點是直線下方的拋物線上的一個動點,作于點,當的值最大時,求此時點的坐標及的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有六張正面分別標有數(shù)字﹣2,﹣1,0,1,2,3的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為a,將該卡片上的數(shù)字加1記為b,則函數(shù)yax2+bx+2的圖象過點(13)的概率為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yx2x軸交于點A,以OA為斜邊在x軸的上方作等腰直角三角形OAB,將△OAB沿x軸向右平移,當點B落在直線yx2上時,則線段AB在平移過程中掃過部分的圖形面積為_____

查看答案和解析>>

同步練習冊答案