【題目】如圖,在每個小正方形的邊長為1的網格中,A,B,D,E為格點,C為,的延長線的交點.
(Ⅰ)的結果為_________________.
(Ⅱ)若點R在線段上,點S在線段上,點T在線段上,且滿足四邊形為菱形,請在如圖所示的網格中,用無刻度的直尺,畫出菱形,并簡要說明點R,S,T的位置是如何找到的(不要求證明)____________________.
科目:初中數學 來源: 題型:
【題目】在“五四青年節(jié)”來臨之際,某校舉辦了以“我的青春我做主”為主題的演講比賽.并從參加比賽的學生中隨機抽取部分學生的演講成績進行統(tǒng)計(等級記為:優(yōu)秀,:良好,:一般,:較差),并制作了如下統(tǒng)計圖表(部分信息未給出).
等級 | 人數 |
20 | |
10 |
請根據統(tǒng)計圖表中的信息解答下列問題:
(1)這次共抽取了______名參加演講比賽的學生,統(tǒng)汁圖中________,_______;
(2)求扇形統(tǒng)計圖中演講成績等級為“一般”所對應扇形的圓心角的度數;
(3)若該校學生共2000人,如果都參加了演講比賽,請你估計成績達到優(yōu)秀的學生有多少人?
(4)若演講比賽成績?yōu)?/span>等級的學生中恰好有2名女生,其余的學生為男生,從等級的學生中抽取兩名同學參加全市演講比賽,請用列表或畫樹狀圖的方法求出“恰好抽中—名男生和一名女生”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線經過點,點,與x軸交于另一點C,頂點為D,連接.
(1)求該拋物線的解析式;
(2)點P為該拋物線上一動點(與點B,C不重合),設點P的橫坐標為t,
①當點P在直線的下方運動時,求面積的最大值;
②該拋物線上是否存在點P,使得?若存在,請直接寫出點P的坐標若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖所示的網格中,已知線段,現要在該網格內再確定格點和格點,某數學探究小組在探究時發(fā)現以下結論:以下結論不正確的是( )
A.將線段平移得到線段,使四邊形為正方形的有2種;
B.將線段平移得到線段,使四邊形為菱形的(正方形除外)有3種;
C.將線段平移得到線段,使四邊形為矩形的(正方形除外)有兩種;
D.不存在以為對角線的四邊形是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知菱形中,為對角線,點是的中點,連接交于點,的垂直平分線交于點,交于點,連接.
(1)若,求證:四邊形是正方形
(2)已知,求的長;
(3)若固定,設,將繞著點從點開始逆時針旋轉過程中,菱形也隨之變化,且滿足,若是直角三角形,直接寫出的值;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市中心城區(qū)居民用水實行以戶為單位的三級階梯收費辦法:
第Ⅰ級:居民每戶每月用水不超過18噸時,每噸收水費3元;
第Ⅱ級:居民每戶每月用水超過18噸但不超過25噸,未超過18噸的部分按照第Ⅰ級標準收費,超過的部分每噸收水費4元;
第Ⅲ級:居民每戶每月用水超過25噸,未超過25噸的部分按照第Ⅰ、Ⅱ級標準收費,超過的部分每噸收水費6元.
現把上述水費階梯收費辦法稱為方案①;假設還存在方案②:居民每戶月用水一律按照每噸4元的標準繳費.
設一戶居民月用水x噸.
(Ⅰ)根據題意填表:
(Ⅱ)設方案①應繳水費為元,方案②應繳水費為元,分別求,關于x的函數解析式;
(Ⅲ)當時,通過計算說明居民選擇哪種付費方式更合算.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店從機械廠購進甲、乙兩種零件進行銷售,若甲種零件每件的進價是乙種零件每件進價的,用1600元單獨購進一種零件時,購進甲種零件的數量比乙種零件的數量多4件.
(1)求每件甲種零件和每件乙種零件的進價分別為多少元?
(2)若該商店計劃購進甲、乙兩種零件共110件,準備將零件批發(fā)給零售商. 甲種零件的批發(fā)價是每件100元,乙種零件的批發(fā)價是每件130元,該商店計劃將這批產品全部售出從零售商處獲利不低于3000元,那么該商店最多購進多少件甲種零件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌
粽子,每盒進價是40元,超市規(guī)定每盒售價不得少于45元.根據以往銷售經驗發(fā)現:當售價定為每盒45元時,每天可賣出700盒,每盒售價每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價 (元)之間的函數關系式;(4分)
(2)當每盒售價定為多少元時,每天銷售的利潤 (元)最大?最大利潤是多少?(6分)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點E是AC的中點.
(1)求證:直線DE是⊙O的切線;
(2)若⊙O半徑為1,BC=4,求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com