【題目】如圖,ABO的直徑,ACO的切線,切點(diǎn)為ABCO于點(diǎn)D,點(diǎn)EAC的中點(diǎn).

1)求證:直線DEO的切線;

2)若O半徑為1,BC4,求圖中陰影部分的面積.

【答案】1)見(jiàn)解析;(2)圖中陰影部分的面積為

【解析】

(1)連接OEOD,根據(jù)切線的性質(zhì)得到∠OAC=90°,根據(jù)三角形中位線定理得到OEBC,證明△AOE≌△DOE(SAS),根據(jù)全等三角形的性質(zhì)、切線的判定定理證明;
(2)求出AC,AE的長(zhǎng),得出∠AOD=120°,根據(jù)扇形的面積公式計(jì)算即可.

1)證明:連接OE、OD,如圖,

ACO的切線,

ABAC,

∴∠OAC90°,

∵點(diǎn)EAC的中點(diǎn),O點(diǎn)為AB的中點(diǎn),

OEBC,

∴∠1=∠B,∠2=∠3,

OBOD,

∴∠B=∠3

∴∠1=∠2,

在△AOE和△DOE

,

∴△AOE≌△DOESAS

∴∠ODE=∠OAE90°,

DEOD,

ODO的半徑,

DEO的切線;

2)∵O半徑為1,

AB2,

∵∠BAC90°,BC4

∴∠C30°,AC,

∴∠B60°,

∴∠AOD2B120°,

又∵點(diǎn)EAC的中點(diǎn),

AEAC,

∴圖中陰影部分的面積=2SAOES扇形AOD2×××1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,A,B,D,E為格點(diǎn),C,的延長(zhǎng)線的交點(diǎn).

(Ⅰ)的結(jié)果為_________________.

(Ⅱ)若點(diǎn)R在線段上,點(diǎn)S在線段上,點(diǎn)T在線段上,且滿足四邊形為菱形,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫出菱形,并簡(jiǎn)要說(shuō)明點(diǎn)R,S,T的位置是如何找到的(不要求證明)____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB,DECB.若AB10CD6,則DE的長(zhǎng)為

A.B.C.6D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,且,.給出如下定義:若平面上存在一點(diǎn)P,使是以線段為斜邊的直角三角形,則稱點(diǎn)P為點(diǎn)A、點(diǎn)B的“直角點(diǎn)”.

1)已知點(diǎn)A的坐標(biāo)為

①若點(diǎn)B的坐標(biāo)為,在點(diǎn)中,是點(diǎn)A、點(diǎn)B的“直角點(diǎn)”的是_________;

②點(diǎn)Bx軸的正半軸上,且,當(dāng)直線上存在點(diǎn)A、點(diǎn)B的“直角點(diǎn)”時(shí),求b的取值范圍;

2的半徑為r,點(diǎn)為點(diǎn)、點(diǎn)的“直角點(diǎn)”,若使得有交點(diǎn),直接寫出半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yx2x軸交于點(diǎn)A,以OA為斜邊在x軸的上方作等腰直角三角形OAB,將△OAB沿x軸向右平移,當(dāng)點(diǎn)B落在直線yx2上時(shí),則線段AB在平移過(guò)程中掃過(guò)部分的圖形面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為2的正方形ABCD中,PAB上的一動(dòng)點(diǎn),EAD中點(diǎn),PECD延長(zhǎng)線于Q,過(guò)EEFPQBC的延長(zhǎng)線于F,則下列結(jié)論:①△APE≌△DQE;②PQ=EF;③當(dāng)PAB中點(diǎn)時(shí),CF=;④若HQC的中點(diǎn),當(dāng)PA移動(dòng)到B時(shí),線段EH掃過(guò)的面積為1,其中正確的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,AB=AC,∠BAC=60°,DBC邊上一點(diǎn),(不與點(diǎn)B、C)重合,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到AE,連接EC,則∠ACE的度數(shù)是__________,線段AC,CD,CE之間的數(shù)量關(guān)系是_______________.

(2)2,在△ABC中,AB=AC,∠BAC=90°,DBC邊上一點(diǎn)(不與點(diǎn)B、C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,請(qǐng)寫出∠ACE的度數(shù)及線段AD,BD,CD之間的數(shù)量關(guān)系,并說(shuō)明理由.

(3)如圖3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若點(diǎn)A滿足AB=AC,∠BAC=90°,請(qǐng)直接寫出線段AD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形中,,點(diǎn)為邊上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合),點(diǎn)在邊上,且,將線段繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)120°得線段,連接

1)依題意補(bǔ)全圖形;

2)求證:為等邊三角形

3)用等式表示線段的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)E,H在矩形ABCDAD邊上,點(diǎn)F,GBC邊上,將矩形ABCD沿EFGH折疊,使點(diǎn)B和點(diǎn)C落在AD邊上同一點(diǎn)P處.折疊后,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)A',點(diǎn)D的對(duì)應(yīng)點(diǎn)為點(diǎn)D',若∠FPG90°,A'E3D'H1,則矩形ABCD的周長(zhǎng)等于_____

查看答案和解析>>

同步練習(xí)冊(cè)答案