【題目】如圖,等腰直角三角形ABC中,點(diǎn)D在斜邊BC上,以AD為直角邊作等腰直角三角形ADE.
(1)求證:△ABD≌△ACE;
(2)求證:BD2+CD2=2AD2.
【答案】見解析
【解析】
(1)通過證BA=CA,AD=AE,∠BAD=∠CAE,得出△ABD≌△ACE;
(2)證CE=BD,DE2=2AD2,再在Rt△CDE中利用勾股定理即可.
解:∵△ABC,△ADE是等腰直角三角形,
∴∠BAC=∠DAE=90°,BA=CA,AD=AE,∠B=∠ACB=∠ADE=∠AED=45°,
∴∠BAD+∠DAC =∠CAE+∠DAC,
∴∠BAD=∠CAE.
在△ABD與△ACE中,BA=CA,∠BAD=∠CAE,AD=AE,
∴△ABD≌△ACE.
(2)∵△ABD≌△ACE,
∴∠ABD=∠ACE=45°,BD=CE.
∴∠ECD=∠ACE+∠ACB=90°,
∴CE2+CD2=DE2.
∵△ADE是等腰直角三角形,
∴DE2=AD2+AE2=2AD2.
∴BD2+CD2=2AD2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點(diǎn)D在BC上,△ADE是等腰三角形,AD =AE ,∠DAE =100°,當(dāng)DE⊥AC時(shí),求∠BAD和∠EDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時(shí)把手端點(diǎn)A、出水口B和點(diǎn)落水點(diǎn)C在同一直線上,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=,cos37°=,tan37°=)
求把手端點(diǎn)A到BD的距離;
求CH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,已知A(﹣1,0),C(0,3)
(1)求該拋物線的表達(dá)式;
(2)求BC的解析式;
(3)點(diǎn)M是對稱軸右側(cè)點(diǎn)B左側(cè)的拋物線上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)M運(yùn)動(dòng)到什么位置時(shí),△BCM的面積最大?求△BCM面積的最大值及此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,根據(jù)要求回答下列問題:
(1)點(diǎn)A關(guān)于y軸對稱點(diǎn)A′的坐標(biāo)是 ;點(diǎn)B關(guān)于y軸對稱點(diǎn)B′的坐標(biāo)是
(2)作出△ABC關(guān)于y軸對稱的圖形△A′B′C′(不要求寫作法)
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場準(zhǔn)備進(jìn)一批兩種不同型號的衣服,已知購進(jìn)A種型號衣服9件,B種型號衣服10件,則共需1810元;若購進(jìn)A種型號衣服12件,B種型號衣服8件,共需1880元;已知銷售一件A型號衣服可獲利18元,銷售一件B型號衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號衣服不多于28件.
(1)求A、B型號衣服進(jìn)價(jià)各是多少元?
(2)若已知購進(jìn)A型號衣服是B型號衣服的2倍還多4件,則商店在這次進(jìn)貨中可有幾種方案并簡述購貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長;
(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題情境】
課外興趣小組活動(dòng)時(shí),老師提出了如下問題:
如圖①,△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD至點(diǎn)E,使DE=AD,連接BE.請根據(jù)小明的方法思考:
(1)由已知和作圖能得到△ADC≌△EDB,依據(jù)是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三邊關(guān)系”可求得AD的取值范圍是 .
解后反思:題目中出現(xiàn)“中點(diǎn)”、“中線”等條件,可考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個(gè)三角形之中.
【初步運(yùn)用】
如圖②,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求線段BF的長.
【靈活運(yùn)用】
如圖③,在△ABC中, ∠A=90°,D為BC中點(diǎn), DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF.試猜想線段BE、CF、EF三者之間的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com