【題目】小明用的練習(xí)本可以到甲超市購(gòu)買(mǎi),也可以到乙超市購(gòu)買(mǎi).已知兩超市的標(biāo)價(jià)都是每本1元,但甲超市的優(yōu)惠條件是購(gòu)買(mǎi)10本以上,從第11本開(kāi)始按標(biāo)價(jià)的70%賣(mài).乙超市的優(yōu)惠條件是從第1本開(kāi)始就按標(biāo)價(jià)的85%賣(mài).
(1)當(dāng)小明要買(mǎi)20本時(shí),到哪家超市購(gòu)買(mǎi)較省錢(qián)?
(2)寫(xiě)出甲超市中,收款y甲(元)與購(gòu)買(mǎi)本數(shù)x(本)(x>10)的關(guān)系式.
(3)小明現(xiàn)有24元錢(qián),最多可買(mǎi)多少本練習(xí)本?
【答案】(1)一樣(2)y甲=0.7x+3(x>10)(3)30本
【解析】試題分析:(1)、根據(jù)甲超市所需要的費(fèi)用=前10本的總費(fèi)用+后10本的總費(fèi)用×70%得出甲所需要的費(fèi)用,根據(jù)乙超市所需要的費(fèi)用=20本的總費(fèi)用×85%得出乙所需要的費(fèi)用,然后進(jìn)行比較大小得出答案;(2)、甲超市所需要的費(fèi)用=前10本的總費(fèi)用+超出10本的總費(fèi)用×70%得出函數(shù)解析式;(3)、首先求出乙的函數(shù)解析式,然后分別求出甲和乙超市分別能買(mǎi)到幾本練習(xí)本,從而得出答案.
試題解析:(1)、買(mǎi)20本時(shí),在甲超市購(gòu)買(mǎi)需用10×1+10×1×70%=17(元),
在乙超市購(gòu)買(mǎi)需用20×1×85%=17(元),
所以買(mǎi)20本到兩家超市買(mǎi)收費(fèi)一樣.
(2)、y甲=10×1+(x-10)×1×70%=0.7x+3(x>10).
(3)由題知乙超市收款y乙(元)與購(gòu)買(mǎi)本數(shù)x(本)間的關(guān)系式為y乙=x×1×85%=x.
所以當(dāng)y甲=24時(shí),24=0.7x甲+3,x甲=30;當(dāng)y乙=24時(shí),24=x乙,x乙≈28.
所以拿24元錢(qián)最多可以買(mǎi)30本練習(xí)本(在甲超市購(gòu)買(mǎi)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別過(guò)反比例函數(shù)y=的圖象上的點(diǎn)P1(1,y1),P2(2,y2),…Pn(n,yn)…作x軸的垂線,垂足分別為A1,A2,…,An…,連接A1P2,A2P3,…,An-1Pn,…,再以A1P1,A1P2為一組鄰邊畫(huà)一個(gè)平行四邊形A1P1B1P2,以A 2P2,A2P3為一組鄰邊畫(huà)一個(gè)平行四邊形A2P2B2P3,點(diǎn)B2的縱坐標(biāo)是____.依此類(lèi)推,則點(diǎn)Bn的縱坐標(biāo)是_______.(結(jié)果用含n代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【課本引申】
我們知道,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在怎樣的數(shù)量關(guān)系呢?
【嘗試探究】
(1)如圖1,∠DBC與∠ECB分別為△ABC的兩個(gè)外角,試探究∠A與∠DBC+∠ECB之間存在怎樣的數(shù)量關(guān)系?為什么?
【拓展運(yùn)用】
(2)如圖2,在△ABC紙片中剪去△CED,得到四邊形ABDE,若∠1+∠2=230°,則剪掉的∠C=_________;
(3)小明聯(lián)想到了曾經(jīng)解決的一個(gè)問(wèn)題:如圖3,在△ABC中,BP、CP分別平分外角∠DBC、∠ECB,∠P與∠A有何數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出答案_ .
(4)如圖4,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,∠P與∠A、∠D有何數(shù)量關(guān)系?為什么?(若需要利用上面的結(jié)論說(shuō)明,可直接使用,不需說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用勾股定理可以在數(shù)軸上畫(huà)出表示的點(diǎn),請(qǐng)依據(jù)以下思路完成畫(huà)圖,并保留畫(huà)圖痕跡:
第一步:(計(jì)算)嘗試滿足,使其中a,b都為正整數(shù).你取的正整數(shù)a=____,b=________;
第二步:(畫(huà)長(zhǎng)為的線段)以第一步中你所取的正整數(shù)a,b為兩條直角邊長(zhǎng)畫(huà)Rt△OEF,使O為原點(diǎn),點(diǎn)E落在數(shù)軸的正半軸上, ,則斜邊OF的長(zhǎng)即為.
請(qǐng)?jiān)谙旅娴臄?shù)軸上畫(huà)圖:(第二步不要求尺規(guī)作圖,不要求寫(xiě)畫(huà)法)
第三步:(畫(huà)表示的點(diǎn))在下面的數(shù)軸上畫(huà)出表示的點(diǎn)M,并描述第三步的畫(huà)圖步驟:_______________________________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】彈簧掛上物體后會(huì)伸長(zhǎng),已知一彈簧的長(zhǎng)度(cm)與所掛物體的重量(kg)之間的關(guān)系如下表:
所掛物體的重量(kg) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
彈簧的長(zhǎng)度(cm) | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 | 15 | 15.5 |
(1)當(dāng)所掛物體的重量為3kg時(shí),彈簧的長(zhǎng)度是_____________cm;
(2)如果所掛物體的重量為xkg,彈簧的長(zhǎng)度為ycm,根據(jù)上表寫(xiě)出y與x的關(guān)系式;
(3)當(dāng)所掛物體的重量為5.5kg時(shí),請(qǐng)求出彈簧的長(zhǎng)度。
(4)如果彈簧的最大伸長(zhǎng)長(zhǎng)度為20cm,則該彈簧最多能掛多重的物體?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)驗(yàn)與探究:
()如圖,直線為第一、三象限的角平分線,觀察易知關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為,請(qǐng)?jiān)趫D中分別標(biāo)明、關(guān)于直線的對(duì)稱點(diǎn)、的位置,并寫(xiě)出他們的坐標(biāo): __________、__________.
()結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),你會(huì)發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)關(guān)于第一、三象限的角平分線的對(duì)稱點(diǎn)的坐標(biāo)為__________ (不必證明).
()已知兩點(diǎn)、,在直線上是否存在一點(diǎn),使點(diǎn)到、兩點(diǎn)的距離之和最小,并求出最小距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是邊長(zhǎng)為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°.以D為頂點(diǎn)作一個(gè)60°角,使其兩邊分別交AB于點(diǎn)M,交AC于點(diǎn)N,連接MN,則△AMN的周長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在邊AC上,下列條件中,能判斷△BDC與△ABC相似的是 ( )
A. AB·CB=CA·CD B. AB·CD=BD·BC C. BC2=AC·DC D. BD2=CD·DA
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)x4·x6-(x5)2;
(2)(-xy)2·x4y+(-2x2y)3;
(3)(1-3a)2-2(1-3a);
(4)(a+2b)(a-2b)-b(a-8b).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com