【題目】如圖,矩形中,的中點(diǎn),將沿直線折疊后得到,延長(zhǎng)于點(diǎn).若,,則的長(zhǎng)為( )

A. B. C. D.

【答案】B

【解析】

根據(jù)點(diǎn)EAD的中點(diǎn)以及翻折的性質(zhì)可以求出AE=DE=EG,然后利用“HL”證明EDFEGF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可證得DF=GF;設(shè)FD=x,表示出FC、BF,然后在RtBCF中,利用勾股定理列式進(jìn)行計(jì)算即可.

EAD的中點(diǎn),

AE=DE,

ABE沿BE折疊后得到GBE,

AE=EG,AB=BG,

ED=EG,

∵在矩形ABCD中,

∵在RtEDFRtEGF,

RtEDFRtEGF(HL),

DF=FG,

設(shè)DF=x,則BF=6+x,CF=6x,

RtBCF,

解得x=4.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,現(xiàn)有動(dòng)點(diǎn)從點(diǎn)出發(fā),沿射線方向運(yùn)動(dòng),動(dòng)點(diǎn)從點(diǎn)出發(fā),沿射線方向運(yùn)動(dòng),已知點(diǎn)的速度是,點(diǎn)的速度是,它們同時(shí)出發(fā),經(jīng)過________秒,的面積是面積的一半?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADC,BD=DC

C.B=C,BAD=CAD D. B=CBD=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠EAF=15°,,AB=BC=CD=DE=EF,則∠EDF等于( )

A.90°B.75°C.70°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C 是路段 AB 的中點(diǎn),兩人從 C 同時(shí)出發(fā),以相同的速度分別沿兩條直線行走,并同時(shí)到達(dá) D,E 兩地,DAABEBAB,D,E 與路段AB 的距離相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC,ACB=90°,CDAB,垂足為D,AF平分∠CAB,CD于點(diǎn)E,CB于點(diǎn)F.AC=6,AB=10,DE的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在關(guān)于x的分式方程 ①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均為實(shí)數(shù),方程①的根為非負(fù)數(shù).

(1)求k的取值范圍;

(2)當(dāng)方程②有兩個(gè)整數(shù)根x1、x2,k為整數(shù),且k=m+2,n=1時(shí),求方程②的整數(shù)根;

(3)當(dāng)方程②有兩個(gè)實(shí)數(shù)根x1、x2,滿足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k為負(fù)整數(shù)時(shí),試判斷|m|≤2是否成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,C=90°,AC=BC=4cm,點(diǎn)D是斜邊AB的中點(diǎn),點(diǎn)E從點(diǎn)B出發(fā)以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)F同時(shí)從點(diǎn)C出發(fā)以一定的速度沿射線CA方向運(yùn)動(dòng),規(guī)定:當(dāng)點(diǎn)E到終點(diǎn)C時(shí)停止運(yùn)動(dòng);設(shè)運(yùn)動(dòng)的時(shí)間為x秒,連接DE、DF.

(1)填空:SABC=   cm2;

(2)當(dāng)x=1且點(diǎn)F運(yùn)動(dòng)的速度也是1cm/s時(shí),求證:DE=DF;

(3)若動(dòng)點(diǎn)F以3cm/s的速度沿射線CA方向運(yùn)動(dòng);在點(diǎn)E、點(diǎn)F運(yùn)動(dòng)過程中,如果有某個(gè)時(shí)間x,使得ADF的面積與BDE的面積存在兩倍關(guān)系,請(qǐng)你直接寫出時(shí)間x的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)度,并使各邊長(zhǎng)變?yōu)樵瓉?lái)的倍,得,即如圖①,我們將這種變換記為

如圖①,對(duì)作變換,則________;直線與直線所夾的銳角為________度;

如圖②,中,,,對(duì)作變換,使點(diǎn)、、在同一直線上,且四邊形為矩形,求的值;

如圖③,中,,,,對(duì)作變換,使點(diǎn)、在同一直線上,且四邊形為平行四邊形,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案