【題目】在△ABC和△DEF中,將△DEF按要求擺放,使得∠D的兩條邊分別經(jīng)過點B和點C.
(1)當將△DEF如圖1擺放時,若∠A=50°,∠E+∠F=100°,則∠D= ;∠ABD+∠ACD= .
(2)當將△DEF如圖2擺放時,∠A=m°,∠E+∠F=n°,請求出∠ABD+∠ACD的度數(shù)(用含m、n的代數(shù)式表示).
(3)能否將△DEF擺放到某個位置,使得BD、CD同時平分∠ABC和∠ACB.若能,求出∠A、∠E、∠F滿足的關系?若不能,請說明理由?
【答案】(1)80°,230°;(2)180°-m°- n°;(3)能,
【解析】
(1)根據(jù)三角形內(nèi)角和可求出∠D的度數(shù),要求∠ABD+∠ACD的度數(shù),只要求出∠ABC+∠CBD+∠ACB+∠BCD,利用三角形內(nèi)角和定理得出∠ABC+∠ACB=180°-∠A=180°-50°=130°;根據(jù)三角形內(nèi)角和定理,∠CBD+∠BCD=∠E+∠F=100°,得出∠ABD+∠ACD=∠ABC+∠CBD+∠ACB+∠BCD=230°;
(2)要求∠ABD+∠ACD的度數(shù),只要求出∠ABC+∠ACB-(∠BCD+∠CBD)的度數(shù).根據(jù)三角形內(nèi)角和定理,∠CBD+∠BCD=∠E+∠F=n°;根據(jù)三角形內(nèi)角和定理得,∠ABC+∠ACB=180°-∠A=(180-m)°,得出∠ABD+∠ACD=∠ABC+∠ACB-(∠BCD+∠CBD)=(180-m-n)°;
(3)若滿足條件,根據(jù)題意可得∠ABD+∠ACD=∠CBD+∠BCD,可得n°=90°-m°,從而得出結論.
解:(1)∵∠E+∠F=100°,
∴∠D=180°-(∠E+∠F)=80°,
在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=50°,
∴∠ABC+∠ACB=180°-50°=130°,
在△BCD中,∠D+∠BCD+∠CBD=180°,
∴∠BCD+∠CBD=180°-∠D,
在△DEF中,∠D+∠E+∠F=180°,
∴∠E+∠F=180°-∠D,
∴∠CBD+∠BCD=∠E+∠F=100°,
∴∠ABD+∠ACD=∠ABC+∠CBD+∠ACB+∠BCD=130°+100°=230°;
(2)在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=m°,
∴∠ABC+∠ACB=180°-m°,
在△DEF中,∠D+∠E+∠F=180°,
∴∠D=180°- (∠E+∠F)= 180°-n°,
在△BCD中,∠D+∠BCD+∠CBD=180°,
∴∠BCD+∠CBD=180°-∠D=180°-(180°-n°)= n°,
∴∠ABD+∠ACD
=∠ABC-∠CBD+∠ACB-∠BCD
=(∠ABC+ ACB)-( ∠CBD+∠BCD)
=180°-m°- n°;
(3)能.
∵BD、CD平分∠ABC和∠ACB,
∴∠ABD=∠CBD,∠ACD=∠BCD,
∴∠ABD+∠ACD=∠CBD+∠BCD,
∴180°-m°- n°=n°,
∴n°=90°-m°,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,AD∥BC,∠BAD的平分線交BC于點G,∠BCD=90°.
(1)求證:∠BAG=∠BGA;
(2)如圖2,若∠ABG=50°,∠BCD的平分線交AD于點E、交射線GA于點F.求∠AFC的度數(shù);
(3)如圖3,線段AG上有一點P,滿足∠ABP=3∠PBG,過點C作CH∥AG.若在直線AG上取一點M,使∠PBM=∠DCH,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD,其中AD//BC,AB⊥BC,將DC沿DE折疊,C落于,交CB于G,且ABGD為長方形(如圖1);再將紙片展開,將AD沿DF折疊,使A點落在DC上一點(如圖2),在兩次折疊過程中,兩條折痕DE、DF所成的角為____________度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC的平分線交BC于點D,E是AB上一點,且AE=AC,EF∥BC交AD于點F.
求證:四邊形CDEF是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點O在△ABC的內(nèi)部,∠BOC=90°,OB=OC,D,E,F,G分別是AB,OB,OC,AC的中點.
(1)求證:四邊形DEFG是矩形;
(2)若DE=2,EF=3,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】[閱讀]
在平面直角坐標系中,以任意兩點P( x1,y1)、Q(x2,y2)為端點的線段中點坐標為(,).
[運用]
(1)如圖,矩形ONEF的對角線相交于點M,ON、OF分別在x軸和y軸上,O為坐標原點,點E的坐標為(4,3),則點M的坐標為 .
(2)在直角坐標系中,有A(﹣1,2),B(3,1),C(1,4)三點,另有一點D與點A、B、C構成平行四邊形的頂點,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】AB∥CD,C在 D的右側,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直線交于點 E.∠ADC=70°.
(1)求∠EDC 的度數(shù);
(2)若∠ABC=30°,求∠BED 的度數(shù);
(3)將線段 BC沿 DC方向移動,使得點 B在點 A的右側,其他條件不變,若∠ABC=n°,請直接寫出∠BED 的度數(shù)(用含 n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點H,請你添加一個適當?shù)臈l件:_____,使△AEH≌△CEB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D、F在線段AB上,點E、G分別在線段BC和AC上,CD∥EF,∠1=∠2.
(1)判斷DG與BC的位置關系,并說明理由;
(2)若DG是∠ADC的平分線,∠3=85°,且∠DCE:∠DCG=9:10,AB與CD有怎樣的位置關系?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com