【題目】如圖,在正方形ABCD中,AB=4,AC相交于點ONAO的中點,點MBC邊上,POD的中點,過點PPMBC于點M,交于點N′,則PN-MN′的值為(

A.B.C.D.

【答案】A

【解析】

根據(jù)正方形的性質(zhì)可得點OAC的中點,根據(jù)三角形中位線的性質(zhì)可求出PN的長,由PMBC可得PM//CD,根據(jù)點POD中點可得點N′為OC中點,即可得出AC=4CN′,根據(jù)MN//AB可得△CMN′∽△CBA,根據(jù)相似三角形的性質(zhì)可求出MN′的長,進而可求出PN-MN′的長.

∵四邊形ABCD是正方形,AB=4,

OA=OCAD=AB=4,

NAO的中點,POD的中點,

PN是△AOD的中位線,

PN=AD=2,

PMBC,

PM//CD//AB,

∴點N′OC的中點,

AC=4CN′,

PM//AB,

∴△CMN′∽△CBA,

MN′=1,

PN-MN′=2-1=1

故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,點分別在上,.

(1)求證:.

(2)連接于點,延長至點,使,連接,.求證:四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:拋物線yax+1)(x3)與x軸相交于A、B兩點,與y軸的交于點C0,﹣3).

1)求拋物線的解析式的一般式.

2)若拋物線上有一點P,滿足∠ACO=∠PCB,求P點坐標.

3)直線lykxk+2與拋物線交于E、F兩點,當點B到直線l的距離最大時,求BEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸于、兩點,交軸于點,點的坐標為,直線經(jīng)過點、.

1)求拋物線的函數(shù)表達式;

2)點是直線上方拋物線上的一動點,求面積的最大值并求出此時點的坐標;

3)過點的直線交直線于點,連接,當直線與直線的一個夾角等于3倍時,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某果園有果樹80棵,現(xiàn)準備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低,若該果園每棵果樹產(chǎn)果(千克),增種果樹(棵), 它們之間的函數(shù)關系如圖所示.

1)求之間的函數(shù)關系式;

2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大雁塔是現(xiàn)存最早規(guī)模最大的唐代四方樓閣式磚塔,被國務院批準列人第一批全國重點文物保護單位,某校社會實踐小組為了測量大雁塔的高度,在地面上處垂直于地面豎立了高度為米的標桿,這時地面上的點,標桿的頂端點,古塔的塔尖點正好在同一直線上,測得米,將標桿向后平移到點處,這時地面上的點,標桿的頂端點,古塔的塔尖點正好在同一直線上(,點,點,點與古塔底處的點在同一直線上) ,這時測得米,米,請你根據(jù)以上數(shù)據(jù),計算古塔的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點P在函數(shù)yx0)的圖象上從左向右運動,PAy軸,交函數(shù)y=﹣x0)的圖象于點A,ABx軸交PO的延長線于點B,則△PAB的面積( 。

A.逐漸變大B.逐漸變小C.等于定值16D.等于定值24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑為2,弦AB的長為2,點C是優(yōu)弧AB上的一動點,BDBC交直線AC于點D,當點C從△ABC面積最大時運動到BC最長時,點D所經(jīng)過的路徑長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑為1,弦AB=BC=,ABBC在圓心O的兩側(cè),弧AC上有一動點D,AEBD于點E,當點D從點C運動到點A時,則點E所經(jīng)過的路徑長為__________

查看答案和解析>>

同步練習冊答案