【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P在函數(shù)yx0)的圖象上從左向右運(yùn)動(dòng),PAy軸,交函數(shù)y=﹣x0)的圖象于點(diǎn)A,ABx軸交PO的延長線于點(diǎn)B,則△PAB的面積( 。

A.逐漸變大B.逐漸變小C.等于定值16D.等于定值24

【答案】C

【解析】

根據(jù)反比例函數(shù)k的幾何意義得出SPOC×21,S矩形ACOD6,即可得出,從而得出,通過證得△POC∽△PBA,得出,即可得出SPAB16SPOC16

如圖,

由題意可知SPOC×21,S矩形ACOD6,

SPOCOCPC,S矩形ACODOCAC,

,

,

,

AB軸,

∴△POC∽△PBA,

,

SPAB16SPOC16,

∴△PAB的面積等于定值16

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線)與雙曲線相交于點(diǎn)、,已知點(diǎn)坐標(biāo),點(diǎn)在第三象限內(nèi),且的面積為3為坐標(biāo)原點(diǎn)).

1)求實(shí)數(shù)、、的值;

2)在該拋物線的對(duì)稱軸上是否存在點(diǎn)使得為等腰三角形?若存在請(qǐng)求出所有的點(diǎn)的坐標(biāo),若不存在請(qǐng)說明理由.

3)在坐標(biāo)系內(nèi)有一個(gè)點(diǎn),恰使得,現(xiàn)要求在軸上找出點(diǎn)使得的周長最小,請(qǐng)求出的坐標(biāo)和周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家規(guī)定,中、小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1h.為此,某區(qū)就“你每天在校體育活動(dòng)時(shí)間是多少”的問題隨機(jī)調(diào)查了轄區(qū)內(nèi)300名初中學(xué)生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖如圖所示,其中A組為t0.5h,B組為0.5ht1h,C組為1ht1.5h,D組為t1.5h.

請(qǐng)根據(jù)上述信息解答下列問題:

(1)本次調(diào)查數(shù)據(jù)的眾數(shù)落在 組內(nèi),中位數(shù)落在 組內(nèi);

(2)該轄區(qū)約有18000名初中學(xué)生,請(qǐng)你估計(jì)其中達(dá)到國家規(guī)定體育活動(dòng)時(shí)間的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,AC相交于點(diǎn)O,NAO的中點(diǎn),點(diǎn)MBC邊上,POD的中點(diǎn),過點(diǎn)PPMBC于點(diǎn)M,交于點(diǎn)N′,則PN-MN′的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.

1)如圖1,在△ABC中,∠A=40°,∠B=60°,當(dāng)∠BCD=40°時(shí),證明:CD△ABC的完美分割線.

2)在△ABC中,∠A=48°,CD△ABC的完美分割線,且△ACD是以AC為底邊的等腰三角形,求∠ACB的度數(shù).

3)如圖2,在△ABC中,AC=2,BC=2,CD△ABC的完美分割線,△ACD是以CD為底邊的等腰三角形,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知上一點(diǎn),.

(Ⅰ)如圖①,過點(diǎn)的切線,與的延長線交于點(diǎn),求的大小及的長;

(Ⅱ)如圖②,上一點(diǎn),延長線與交于點(diǎn),若,求的大小及的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線ymx2+nx3m≠0)與x軸交于A(3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,直線y=﹣x與該拋物線交于E,F兩點(diǎn).

1)求點(diǎn)C坐標(biāo)及拋物線的解析式.

2P是直線EF下方拋物線上的一個(gè)動(dòng)點(diǎn),作PHEF于點(diǎn)H,求PH的最大值.

3)以點(diǎn)C為圓心,1為半徑作圓,⊙C上是否存在點(diǎn)D,使得△BCD是以CD為直角邊的直角三角形?若存在,直接寫出D點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AECDCD的延長線于點(diǎn)E,DA平分∠BDE

⑴求證:AE是⊙O的切線;

⑵若AE4cm,CD6cm,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,AD6,EAB邊的中點(diǎn),F是線段BC上的動(dòng)點(diǎn),將△EBF沿EF所在直線折疊得到△EBF,連接ED,則DE的長度是_____,BD的最小值是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案