【題目】如圖1,將一副三角板的直角重合放置,其中∠A=30°,∠CDE=45°.
(1)如圖1,求∠EFB的度數(shù);
(2)若三角板ACB的位置保持不動(dòng),將三角板CDE繞其直角頂點(diǎn)C順時(shí)針方向旋轉(zhuǎn).
①當(dāng)旋轉(zhuǎn)至如圖2所示位置時(shí),恰好CD∥AB,則∠ECB的度數(shù)為 ;
②若將三角板CDE繼續(xù)繞點(diǎn)C旋轉(zhuǎn),直至回到圖1位置.在這一過程中,是否還會(huì)存在△CDE其中一邊與AB平行?如果存在,請你畫出示意圖,并直接寫出相應(yīng)的∠ECB的大。蝗绻淮嬖冢堈f明理由.
【答案】(1)∠EFB=15°;(2)①30°;②存在,圖見解析,∠ECB=120°、165°、150°、60°或15°.
【解析】
(1)根據(jù)直角三角形內(nèi)角和的性質(zhì)即可得到答案;
(2)①根據(jù)平行線的性質(zhì)即可得到答案;
②分5種情況討論,根據(jù)平行線的性質(zhì)進(jìn)行計(jì)算,即可得到答案.
解:(1)∵∠A=30°,∠CDE=45°,
∴∠ABC=90°﹣30°=60°,∠E=90°﹣45°=45°,
∴∠EFB=∠ABC﹣∠E=60°﹣45°=15°;
(2)①∵CD∥AB,
∴∠ACD=∠A=30°,
∵∠ACD+∠ACE=∠DCE=90°,
∠ECB+∠ACE=∠ACB=90°,
∴∠ECB=∠ACD=30°;
②如圖1,CE∥AB,∠ACE=∠A=30°,
∠ECB=∠ACB+∠ACE=90°+30°=120°;
如圖2,DE∥AB時(shí),延長CD交AB于F,
則∠BFC=∠D=45°,
在△BCF中,∠BCF=180°﹣∠B﹣∠BFC,
=180°﹣60°﹣45°=75°,
∴∠ECB=∠BCF+∠ECF=75°+90°=165°;
如圖3,CD∥AB時(shí),∠BCD=∠B=60°,
∠ECB=∠BCD+∠EDC=60°+90°=150°;
如圖4,CE∥AB時(shí),∠ECB=∠B=60°,
如圖5,DE∥AB時(shí),∠ECB=60°﹣45°=15°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)的坐標(biāo)分別為A(a,2)、B(a,-1),D(b,2).且a、b滿足.點(diǎn)P從A點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度A-B-C-D-A的線路移動(dòng),運(yùn)動(dòng)時(shí)間為t,當(dāng)點(diǎn)P回到A點(diǎn)時(shí)運(yùn)動(dòng)停止
(1)點(diǎn)C的坐標(biāo)為_______________
(2)當(dāng)點(diǎn)P移動(dòng)在線段BC上時(shí),求三角形ACP的面積(用含t的代數(shù)式表示)
(3)在移動(dòng)過程中,當(dāng)三角形ACP的面積是5時(shí),直接寫出點(diǎn)P移動(dòng)的時(shí)間為幾秒
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD、MN相交與點(diǎn)O,FO⊥BO,OM平分∠DOF
(1)請直接寫出圖中所有與∠AON互余的角: .
(2)若∠AOC=∠FOM,求∠MOD與∠AON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根、.
(1)求的取值范圍;
(2)若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠甲、乙兩個(gè)部門各有員工400人,為了解這兩個(gè)部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整:收集數(shù)據(jù):從甲、乙兩個(gè)部門各隨機(jī)抽取20名員工,進(jìn)行了生產(chǎn)技能測試,測試成績(百分)如下:
甲 | 78 | 86 | 74 | 81 | 75 | 76 | 87 | 70 | 75 | 90 |
75 | 79 | 81 | 70 | 74 | 80 | 86 | 69 | 83 | 77 | |
乙 | 93 | 73 | 88 | 81 | 72 | 81 | 94 | 83 | 77 | 83 |
80 | 81 | 70 | 81 | 73 | 78 | 82 | 80 | 70 | 40 |
(1)整理、描述數(shù)據(jù):按如分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù)(請補(bǔ)全表格):
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 | __________ | 0 | 0 | __________ | __________ | __________ |
(說明:成績80分及以上為生產(chǎn)技能優(yōu)秀,70-79分為生產(chǎn)技能良好,60-69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)
分析數(shù)據(jù):兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示(請補(bǔ)全表格):
部門 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲 | 78.3 | __________ | 75 |
乙 | 78 | 80.5 | __________ |
得出結(jié)論:
(2)估計(jì)乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為__________;
(3)你認(rèn)為__________部門員工的生產(chǎn)技能水平較高,說明理由(至少從兩個(gè)不同的角度說明推斷的合理性).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,∠BAC=60,BD、CE為高,F(xiàn)為BC的中點(diǎn),連接DE、DF、EF,則結(jié)論:①DF=EF;②AD∶AB=AE∶AC;③△DEF是等邊三角形;④BE+CD=BC;⑤當(dāng)∠ABC=45時(shí),BE=DE中,一定正確的有 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:已知方程a22a1=0,12bb2=0且ab≠1,求的值.
解:由a22a1=0及12bb2=0,
可知a≠0,b≠0,
又∵ab≠1,.
12bb2=0可變形為
,
根據(jù)a22a1=0和的特征.
、是方程x22x1=0的兩個(gè)不相等的實(shí)數(shù)根,
則,即.
根據(jù)閱讀材料所提供的方法,完成下面的解答.
已知:3m27m2=0,2n2+7n3=0且mn≠1,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD的對角線BD上一點(diǎn)(點(diǎn)P不與點(diǎn)B、D重合),PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,連接EF給出下列五個(gè)結(jié)論:①AP=EF;②AP⊥EF;③僅有當(dāng)∠DAP=45°或67.5°時(shí),△APD是等腰三角形;④∠PFE=∠BAP:⑤PD=EC.其中有正確有( )個(gè).
A. 2B. 3C. 4D. 5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com