【題目】如圖,在菱形中,,,且,連接交對(duì)角線于點(diǎn),則______

【答案】105°

【解析】

由菱形及菱形一個(gè)內(nèi)角為120°,易得△ABC與△ACD為等邊三角形.CEAD可由三線合一得CE平分∠ACD,即求得∠ACE的度數(shù).再由CEBC等腰三角形把∠E度數(shù)求出,用三角形內(nèi)角和即能去∠EFC

∵菱形ABCD中,∠BAD120°

ABBCCDAD,∠BCD120°,∠ACB=∠ACDBCD60°,

∴△ACD是等邊三角形

CEAD

∴∠ACEACD30°

∴∠BCE=∠ACB+∠ACE90°

CEBC

∴∠E=∠CBE45°

∴∠EFC180°EACE180°45°30°105°

故答案為:105°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖示,若△ABC內(nèi)一點(diǎn)P滿足∠PAC=∠PBA=∠PCB,則點(diǎn)P為△ABC的布洛卡點(diǎn).三角形的布洛卡點(diǎn)是法國(guó)數(shù)學(xué)家和教育家克洛爾于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當(dāng)時(shí)的人們所注意,1875年,布洛卡點(diǎn)被一個(gè)數(shù)學(xué)愛(ài)好者法國(guó)軍官布洛卡重新發(fā)現(xiàn),并用他的名字命名.問(wèn)題:已知在等腰直角三角形DEF中,∠EDF=90°,若點(diǎn)Q為△DEF的布洛卡點(diǎn),DQ=1,則EQ+FQ=。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將一副三角板的直角重合放置,其中∠A30°,∠CDE45°.

1)如圖1,求∠EFB的度數(shù);

2)若三角板ACB的位置保持不動(dòng),將三角板CDE繞其直角頂點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn).

①當(dāng)旋轉(zhuǎn)至如圖2所示位置時(shí),恰好CDAB,則∠ECB的度數(shù)為   ;

②若將三角板CDE繼續(xù)繞點(diǎn)C旋轉(zhuǎn),直至回到圖1位置.在這一過(guò)程中,是否還會(huì)存在△CDE其中一邊與AB平行?如果存在,請(qǐng)你畫出示意圖,并直接寫出相應(yīng)的∠ECB的大;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于 的一元二次方程 有兩個(gè)實(shí)數(shù)根
(1)求實(shí)數(shù) 的取值范圍;
(2)當(dāng) 時(shí),求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的四個(gè)頂點(diǎn)分別在四條平行線 、 、 、 上,這四條直線中相鄰兩條之間的距離依次為 、 、 >0, >0, >0).

(1)求證: = ;
(2)設(shè)正方形ABCD的面積為S,求證:S= ;
(3)若 ,當(dāng) 變化時(shí),說(shuō)明正方形ABCD的面積S隨 的變化情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B兩點(diǎn)在數(shù)軸上如圖所示,其中O為原點(diǎn),點(diǎn)A對(duì)應(yīng)的有理數(shù)為a,點(diǎn)B對(duì)應(yīng)的有理數(shù)為b,且點(diǎn)A距離原點(diǎn)6個(gè)單位長(zhǎng)度,ab滿足b-|a|=2.

(1)a=______;b=______;

(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0)

①當(dāng)PO=2PB時(shí),求點(diǎn)P的運(yùn)動(dòng)時(shí)間t

②當(dāng)PB=6時(shí),求t的值:

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到線段OB上時(shí),分別取APOB的中點(diǎn)E、F,則的值是否為一個(gè)定值?如果是,求出定值,如果不是,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x24x+2)(x24x+6+4進(jìn)行因式分解的過(guò)程.

解:設(shè)x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列問(wèn)題:

1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______

A.提取公因式

B.平方差公式

C.兩數(shù)和的完全平方公式

D.兩數(shù)差的完全平方公式

2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填徹底不徹底)若不徹底,請(qǐng)直接寫出因式分解的最后結(jié)果_________

3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x22x)(x22x+2+1進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩同學(xué)騎自行車從A地沿同一條路到B地,已知乙比甲先出發(fā).他們離出發(fā)地的距離s/km和騎行時(shí)間t/h之間的函數(shù)關(guān)系如圖所示.根據(jù)圖象信息,以下說(shuō)法錯(cuò)誤的是(

A.他們都騎了20 km

B.兩人在各自出發(fā)后半小時(shí)內(nèi)的速度相同

C.甲和乙兩人同時(shí)到達(dá)目的地

D.相遇后,甲的速度大于乙的速度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yax+bx軸于點(diǎn)A,交y軸于點(diǎn)B,且ab滿足a+4,直線ykx4k過(guò)定點(diǎn)C,點(diǎn)D為直線ykx4k上一點(diǎn),∠DAB45°

1a   b   ,C坐標(biāo)為   ;

2)如圖1,k=﹣1時(shí),求點(diǎn)D的坐標(biāo);

3)如圖2,在(2)的條件下,點(diǎn)M是直線ykx4k上一點(diǎn),連接AM,將AMA順時(shí)針旋轉(zhuǎn)90°AQ,OQ最小值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案