【題目】如圖,要在長(zhǎng)方形鋼板ABCD的邊AB上找一點(diǎn)E,使∠AEC=150°,應(yīng)怎樣確定點(diǎn)E的位置?為什么?
【答案】以CD為始邊,在長(zhǎng)方形的內(nèi)部,利用量角器作∠DCF=30°,射線CF與AB交于點(diǎn)E,則點(diǎn)E為所找的點(diǎn),理由見(jiàn)解析
【解析】
利用量角器作∠DCF=30°,射線CF與AB交于點(diǎn)E,則∠DCF=∠DCE=30°,由平行線的性質(zhì)得出∠DCE+∠AEC=180°,則∠AEC=150°.
以CD為始邊,在長(zhǎng)方形的內(nèi)部,利用量角器作∠DCF=30°,射線CF與AB交于點(diǎn)E,則點(diǎn)E為所找的點(diǎn);理由如下:
如圖所示:
∵四邊形ABCD是長(zhǎng)方形,
∴AB∥CD,
∴∠DCE+∠AEC=180°,
∵∠DCE=∠DCF=30°,
∴∠AEC=180°﹣∠DCE=180°﹣30°=150°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】4月18日,一年一度的“風(fēng)箏節(jié)”活動(dòng)在市政廣場(chǎng)舉行,如圖,廣場(chǎng)上有一風(fēng)箏A,小江抓著風(fēng)箏線的一端站在D處,他從牽引端E測(cè)得風(fēng)箏A的仰角為67°,同一時(shí)刻小蕓在附近一座距地面30米高(BC=30米)的居民樓頂B處測(cè)得風(fēng)箏A的仰角是45°,已知小江與居民樓的距離CD=40米,牽引端距地面高度DE=1.5米,根據(jù)以上條件計(jì)算風(fēng)箏距地面的高度(結(jié)果精確到0.1米,參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈,≈1.414).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,,將矩形繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)分別落在點(diǎn),,處.
(1)直接填空:當(dāng)時(shí),點(diǎn)所經(jīng)過(guò)的路徑的長(zhǎng)為___________;
(2)若點(diǎn),,在同一直線上,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+4經(jīng)過(guò)A(﹣3,0)、B(4,0)兩點(diǎn),且與y軸交于點(diǎn)C,D(4﹣4,0).動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B移動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CA以某一速度向點(diǎn)A移動(dòng).
(1)求該拋物線的解析式;
(2)若經(jīng)過(guò)t秒的移動(dòng),線段PQ被CD垂直平分,求此時(shí)t的值;
(3)在第一象限的拋物線上取一點(diǎn)G,使得S△GCB=S△GCA,再在拋物線上找點(diǎn)E(不與點(diǎn)A、B、C重合),使得∠GBE=45°,求E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣2與x軸交于兩點(diǎn)A(﹣1,0)和B(4,0),與Y軸交于點(diǎn)C,連接AC、BC、AB,
(1)求拋物線的解析式;
(2)點(diǎn)D是拋物線上一點(diǎn),連接BD、CD,滿足,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)E在線段AB上(與A、B不重合),點(diǎn)F在線段BC上(與B、C不重合),是否存在以C、E、F為頂點(diǎn)的三角形與△ABC相似,若存在,請(qǐng)直接寫出點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:連結(jié)菱形的一邊中點(diǎn)與對(duì)邊的兩端點(diǎn)的線段把它分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,那么稱這樣的菱形為自相似菱形.
(1)判斷下列命題是真命題,還是假命題?
①正方形是自相似菱形;
②有一個(gè)內(nèi)角為60°的菱形是自相似菱形.
③如圖1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點(diǎn),則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED.
(2)如圖2,菱形ABCD是自相似菱形,∠ABC是銳角,邊長(zhǎng)為4,E為BC中點(diǎn).
①求AE,DE的長(zhǎng);
②AC,BD交于點(diǎn)O,求tan∠DBC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,內(nèi)切圓O和邊、、分別相切于點(diǎn)D、E、F,則以下四個(gè)結(jié)論中,錯(cuò)誤的結(jié)論是( )
A.點(diǎn)O是的外心B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一個(gè)小球從斜坡的點(diǎn)O處拋出,小球的拋出路線可以用二次函數(shù)y=4x﹣x2刻畫,斜坡可以用一次函數(shù)y=x刻畫,下列結(jié)論錯(cuò)誤的是( 。
A. 當(dāng)小球拋出高度達(dá)到7.5m時(shí),小球水平距O點(diǎn)水平距離為3m
B. 小球距O點(diǎn)水平距離超過(guò)4米呈下降趨勢(shì)
C. 小球落地點(diǎn)距O點(diǎn)水平距離為7米
D. 斜坡的坡度為1:2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、C、D都在⊙O上,過(guò)點(diǎn)C作AC∥BD交OB延長(zhǎng)線于點(diǎn)A,連接CD,且∠CDB=∠OBD=30°,DB=cm.
(1)求證:AC是⊙O的切線;
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com