【題目】如圖是某地下商業(yè)街的入口,數(shù)學(xué)課外興趣小組同學(xué)打算運(yùn)用所學(xué)知識(shí)測(cè)量側(cè)面支架最高點(diǎn)E到地面距離EF.經(jīng)測(cè)量,支架立柱BC與地面垂直,即∠BCA=90°,且BC=1.5cm,點(diǎn)F、A、C在同一條水平線上,斜桿AB與水平線AC夾角∠BAC=30°,支撐桿DE⊥AB于點(diǎn)D,該支架邊BEAB夾角∠EBD=60°,又測(cè)得AD=1m.請(qǐng)你求出該支架邊BE及頂端E到地面距離EF長(zhǎng)度.

【答案】EB=4m EF= 3.5m

【解析】

過(guò)BBH⊥EF于點(diǎn)H,在Rt△ABC中,根據(jù)∠BAC=30°BC=1.5,可求得AB的長(zhǎng)度,又AD=1m,可求得BD的長(zhǎng)度,在Rt△EBD中解直角三角形求得EB的長(zhǎng)度,然后根據(jù)BH⊥EF,求得∠EBH=30°,繼而可求得EH的長(zhǎng)度,易得EF=EH+HF的值.

解:過(guò)BBH⊥EF于點(diǎn)H

四邊形BCFH為矩形,BC=HF=1.5m,∠HBA=∠AC=30°

Rt△ABC中,∵∠BAC=30°,BC=1.5m,∴AB=3m

∵AD=1m,∴BD=2m

Rt△EDB中,∵∠EBD=60°,∴∠BED=90°60°=30°

∴EB=2BD=2×2=4m

∵∠HBA=∠BAC=30°,∴∠EBH=∠EBD--∠HBD=30°

∴EH=EB=2m

∴EF=EH+HF=2+1.5=3.5m).

答:該支架的邊BE4m,頂端E到地面的距離EF的長(zhǎng)度為3.5m.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在公園有兩座垂直于水平地面且高度不一的圖柱,兩座圓柱后面有一堵與地面互相垂直的墻,且圓柱與墻的距離皆為.敏敏觀察到高度矮圓柱的影子落在地面上,其影長(zhǎng)為;而高圓柱的部分影子落在墻上,如圖所示.已知落在地面上的影子皆與墻面互相重直,并視太陽(yáng)光為平行光,在不計(jì)圓柱厚度與影子寬度的情況下,請(qǐng)回答下列問(wèn)題:

1)若敏敏的身高為,且此刻她的影子完全落在地面上,求影子的長(zhǎng)度.

2)若同一時(shí)間量得高圓柱落在墻上的影長(zhǎng)為,請(qǐng)你畫(huà)出示意圖并求出高圓柱的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖.在RtABC中,∠ACB90°,ACBC,以A為圓心,AD長(zhǎng)為半徑的弧DFAC的延長(zhǎng)線于F,若圖中兩個(gè)陰影部分的面積相等,則_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】規(guī)定:有一角重合,且角的兩邊疊合在一起的兩個(gè)相似四邊形叫做嵌套四邊形,如圖,四邊形ABCDAMPN就是嵌套四邊形.

1)問(wèn)題聯(lián)想

如圖①,嵌套四邊形ABCD,AMPN都是正方形,現(xiàn)把正方形AMPNA為中心順時(shí)針旋轉(zhuǎn)150°得到正方形AM'P'N',連接BM',DN'交于點(diǎn)O,則BM'DN'的數(shù)量關(guān)系為_____,位置關(guān)系為_____;

2)類比探究

如圖②,將(1)中的正方形換成菱形,∠BAD=MAN=60,其他條件不變,則(1)中的結(jié)論還成立嗎? 若成立,請(qǐng)說(shuō)明理由;若不成立,請(qǐng)給出正確的結(jié)論,并說(shuō)明理由;

3)拓展延伸

如圖3,將(1)中的嵌套四邊形ABCDAMPN換成是長(zhǎng)和寬之比為2:1的矩形,旋轉(zhuǎn)角換成α90°α180°),其他條件不變,請(qǐng)直接寫出BM'DN'的數(shù)量關(guān)系和位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC 中,AB=AC, BAC 60°,將線段 AB 繞點(diǎn) A逆時(shí)針旋轉(zhuǎn) 60°得到點(diǎn) D, 點(diǎn) E 與點(diǎn) D 關(guān)于直線 BC 對(duì)稱,連接 CDCE,DE

1)依題意補(bǔ)全圖形;

2)判斷△CDE 的形狀,并證明;

3)請(qǐng)問(wèn)在直線CE上是否存在點(diǎn) P,使得 PA - PB =CD 成立?若存在,請(qǐng)用文字描述出點(diǎn) P 的準(zhǔn)確位置,并畫(huà)圖證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)興趣小組活動(dòng)中,陽(yáng)光和樂(lè)觀兩位同學(xué)設(shè)計(jì)了如圖所示的兩個(gè)轉(zhuǎn)盤做游戲(每個(gè)轉(zhuǎn)盤被分成面積相等的幾個(gè)扇形,并在每個(gè)扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時(shí)轉(zhuǎn)動(dòng)甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則陽(yáng)光獲勝,反之則樂(lè)觀獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).

1)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;

2)游戲?qū)﹄p方公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O與△ABCAB、AC的延長(zhǎng)線及BC邊相切,且∠ACB90°,∠A,∠B,∠C所對(duì)的邊長(zhǎng)依次為34,5,則⊙O的半徑是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于二次函數(shù)ymx2+(5m+3x+4mm為常數(shù)且m0)有以下三種說(shuō)法:

①不論m為何值,函數(shù)圖象一定過(guò)定點(diǎn)(﹣1,﹣3);

②當(dāng)m=﹣1時(shí),函數(shù)圖象與坐標(biāo)軸有3個(gè)交點(diǎn);

③當(dāng)m0,x≥﹣時(shí),函數(shù)yx的增大而減。慌袛嗾婕,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△BOD都是等腰直角三角形,過(guò)點(diǎn)BABOB交反比例函數(shù)y(x0)于點(diǎn)A,過(guò)點(diǎn)AACBD于點(diǎn)C,若SBODSABC=3,則k的值為____

查看答案和解析>>

同步練習(xí)冊(cè)答案