【題目】已知:如圖,在△ABC中,點(diǎn)A的坐標(biāo)為(﹣4,3),點(diǎn)B的坐標(biāo)為(﹣3,1),BC=2,BC∥x軸.
(1)畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1;并寫出A1,B1,C1的坐標(biāo);
(2)求以點(diǎn)A、B、B1、A1為頂點(diǎn)的四邊形的面積.
【答案】(1)見解析;(2)14.
【解析】
(1)先求得C點(diǎn)坐標(biāo),再根據(jù)關(guān)于y軸對稱的坐標(biāo)特征標(biāo)出A1,B1,C1,然后連線即可;
(2)過A點(diǎn)作AD⊥BC,交CB的延長線于點(diǎn)D,然后根據(jù)梯形的面積公式求解即可.
解:(1)根據(jù)題意可得:點(diǎn)C坐標(biāo)為(﹣1,1),
如圖所示:則A1的坐標(biāo)是(4,3),B1的坐標(biāo)是(3,1),C1的坐標(biāo)(1,1);
(2)過A點(diǎn)作AD⊥BC,交CB的延長線于點(diǎn)D,
由(1)可得AA′=2×4=8,BB′=2×3=6,AD=2,
∴梯形ABB′A′的面積=(AA′+BB′)AD=×(8+6)×2=14.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為1的小正方形組成的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,已知格點(diǎn)三角形ABC(三角形的三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)上).
(1)寫出△ABC的面積;
(2)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(3)寫出點(diǎn)A及其對稱點(diǎn)A1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費(fèi)2000元,購買乙種足球共花費(fèi)1400元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個(gè)乙種足球比購買一個(gè)甲種足球多花20元;
(1)求購買一個(gè)甲種足球、一個(gè)乙種足球各需多少元;
(2)2018年這所學(xué)校決定再次購買甲、乙兩種足球共50個(gè).恰逢該商場對兩種足球的售價(jià)進(jìn)行調(diào)整,甲種足球售價(jià)比第一次購買時(shí)提高了10%,乙種足球售價(jià)比第一次購買時(shí)降低了10%.如果此次購買甲、乙兩種足球的總費(fèi)用不超過2910元,那么這所學(xué)校最多可購買多少個(gè)乙種足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC=5,BC=6(如圖所示),將△ABC沿射線BC方向平移m個(gè)單位得到△DEF,頂點(diǎn)A、B、C分別與D、E、F對應(yīng).若以點(diǎn)A、D、E為頂點(diǎn)的三角形是等腰三角形,且AE為腰,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知EF∥GH,A、D為GH上的兩點(diǎn),M、B為EF上的兩點(diǎn),延長AM于點(diǎn)C,AB平分∠DAC,直線DB平分∠FBC,若∠ACB=100°,則∠DBA的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,將一個(gè)長方形沿著對角線剪開即可得到兩個(gè)全等的三角形,再把△ABC沿著AC方向平移,得到圖②中的△GBH,BG交AC于點(diǎn)E,GH交CD于點(diǎn)F.在圖②中,除△ACD與△HGB全等外,你還可以指出哪幾對全等的三角形(不能添加輔助線和字母)?請選擇其中一對加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=90°,D、E分別在BC、AC上,AD⊥DE,且AD=DE,點(diǎn)F是AE的中點(diǎn),FD、AB的延長線相交于點(diǎn)M,連接MC.
(1)求證:∠FMC=∠FCM;
(2)將條件中的AD⊥DE與(1)中的結(jié)論互換,其他條件不變,命題是否正確?請給出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DO平分∠AOC,OE平分∠BOC,若OA⊥OB,
(1)當(dāng)∠BOC=30°,∠DOE=_______________; 當(dāng)∠BOC=60°,∠DOE=_______________;
(2)通過上面的計(jì)算,猜想∠DOE的度數(shù)與∠AOB有什么關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O、點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠CEF的度數(shù)是( )
A. 60° B. 55° C. 50° D. 45°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com