【題目】如圖,在O中,弦BC垂直于半徑OA,垂足為E,D是優(yōu)弧BC上一點,連接BD,ADOC,∠ADB=30°.

(1)求∠AOC的度數(shù).

(2)若弦BC=8cm,求圖中劣弧BC的長.

【答案】160°;(2

【解析】

1)先根據(jù)垂徑定理得出BE=CE,,再根據(jù)圓周角定理即可得出∠AOC的度數(shù);

(2)連接OB,先根據(jù)勾股定理得出OE的長,由弦BC=8cm,可得半徑的長,繼而求劣弧的長;

解:

1)連接OB

BCOA,

BE=CE,

又∵∠ADB=30°,

∴∠AOC=AOB=2ADB,

∴∠AOC=60°;

2)連接OB得,∠BOC=2AOC=120°,

∵弦BC=8cm,OA⊥BC,

∴CE=4cm,

∴OC=cm,

∴劣弧的長為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以邊長為4+4的等邊三角形AOB的頂點O為坐標原點,邊OA所在直線為x軸建立平面直角坐標系,點B在第一象限,在邊OB上有一點POB的黃金分割點(POPB),那么點P的坐標是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為踐行綠水青山就是金山銀山的理念,及時推廣生態(tài)文明建設,某校組織全校師生參與植樹節(jié)活動.為調査栽種的柳樹的成活情況,對全校學生的植樹情況進行了抽樣調查,并將調查結果分為“A.優(yōu)良”“B.合格”C.差三類.

請根據(jù)圖中信息,解答下列問題.

(1)求被調查學生的人數(shù).

(2)將上面的條形統(tǒng)計圖與扇形統(tǒng)計圖補充完整.

(3)已知植樹小組勤奮組4名學生所種的四棵樹中(每棵樹對應一名責任人)A1棵,B2棵,C1棵,該小組恰好有兩棵樹被抽査,求恰好是兩棵B類樹被抽查的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點AAEBC,垂足為E,連接DE,F為線段DE上一點,且AFE=B

1)求證:ADF∽△DEC;

2)若AB=8,AD=6,AF=4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定:三角形任意兩邊的“極化值”等于第三邊上的中線和這邊一半的平方差.如圖1,在△ABC中,AOBC邊上的中線,ABAC的“極化值”就等于AO2BO2的值,可記為ABAC=AO2BO2

1)在圖1中,若∠BAC=90°,AB=8AC=6,AOBC邊上的中線,則ABAC= ,OCOA=

2)如圖2,在△ABC中,AB=AC=4,∠BAC=120°,求ABACBABC的值;

3)如圖3,在△ABC中,AB=ACAOBC邊上的中線,點NAO上,且ON=AO.已知ABAC=14,BNBA=10,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,對稱軸為x=1,給出下列結論:①abc<0;b2>4ac;4a+2b+c<02a+b=0..其中正確的結論有:

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOBCOD中,∠AOB=COD=90°,B=40°,C=60°,點DOA上.將COD繞點O順時針旋轉一周,在旋轉過程中,當旋轉角是_____°時,CDAB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,點OAB的三等分點,半圓OAC相切,M,N分別是BC與半圓弧上的動點,則MN的最小值和最大值之和是( )

A. 5B. 6C. 7D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABC中,∠C90°AD是∠BAC的角平分線.

1)請尺規(guī)作圖:作⊙O,使圓心OAB上,且AD為⊙O的一條弦.(不寫作法,保留作圖痕跡);

2)判斷直線BC與所作⊙O的位置關系,并說明理由.

查看答案和解析>>

同步練習冊答案