【題目】如圖,已知Rt△ABC中,∠C=90°,AD是∠BAC的角平分線.
(1)請尺規(guī)作圖:作⊙O,使圓心O在AB上,且AD為⊙O的一條弦.(不寫作法,保留作圖痕跡);
(2)判斷直線BC與所作⊙O的位置關(guān)系,并說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在O中,弦BC垂直于半徑OA,垂足為E,D是優(yōu)弧BC上一點,連接BD,AD,OC,∠ADB=30°.
(1)求∠AOC的度數(shù).
(2)若弦BC=8cm,求圖中劣弧BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=3動點P從點A出發(fā),沿AC以每秒4個單位長度的速度向終點C運動.過點P(不與點A、C重合)作EF⊥AC,交AB或BC于點E,交AD或DC于點F,以EF為邊向右作正方形EFGH設(shè)點P的運動時間為t秒.
(1)①AC= .②當(dāng)點F在AD上時,用含t的代數(shù)式直接表示線段PF的長 .
(2)當(dāng)點F與點D重合時,求t的值.
(3)設(shè)方形EFGH的周長為l,求l與t之間的函數(shù)關(guān)系式.
(4)直接寫出對角線AC所在的直線將正方形EFGH分成兩部分圖形的面積比為1:2時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的布袋中裝有4個只有顏色不同的球,其中1個黃球、1個藍(lán)球、2個紅球.
(1)任意摸出1個球,記下顏色后不放回,再任意摸出1個球.求兩次摸出的球恰好都是紅球的概率(要求畫樹狀圖或列表);
(2)現(xiàn)再將n個黃球放入布袋,攪勻后,使任意摸出1個球是黃球的概率為,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某臺機床生產(chǎn)鑄件產(chǎn)品,按照生產(chǎn)標(biāo)準(zhǔn),鑄件產(chǎn)品評定等級、整改費用規(guī)定如下:
重量 (單位:,精確到0.1) | 評定等級 | 整改費用 (單位:元/件) |
特優(yōu)品 | ||
優(yōu)等品 | ||
合格品 | ||
不合格品 | 50 | |
不合格品 | 30 |
注:在統(tǒng)計優(yōu)等品個數(shù)時,將特優(yōu)品計算在內(nèi);在統(tǒng)計合格品個數(shù)時,將優(yōu)等品(含特優(yōu)品)計算在內(nèi).
現(xiàn)該機床生產(chǎn)20件產(chǎn)品,測量其重量,得到如下統(tǒng)計表:
重量 (單位:,精確到0.1) | 29.8 | 29.9 | 30.0 | 30.1 | 30.2 | ||
件數(shù) | 2 | 3 | 4 | 3 | 1 |
對照生產(chǎn)標(biāo)準(zhǔn),發(fā)現(xiàn)這批鑄件產(chǎn)品的合格率為.
(1)求與的值;
(2)根據(jù)客戶要求,這批鑄件產(chǎn)品的合格率不得低于.現(xiàn)決定從不合格產(chǎn)品中隨機抽取兩件進行整改,求整改費用最低的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=(x>0)的圖象與一次函數(shù)y=﹣x+4的圖象交于A和B(6,n)兩點.
(1)求k和n的值;
(2)若點C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當(dāng)2≤x≤6時,函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某生產(chǎn)商存有1200千克產(chǎn)品,生產(chǎn)成本為150元/千克,售價為400元千克.因市場變化,準(zhǔn)備低價一次性處理掉部分存貨,所得貨款全部用來生產(chǎn)產(chǎn)品,產(chǎn)品售價為200元/千克.經(jīng)市場調(diào)研發(fā)現(xiàn),產(chǎn)品存貨的處理價格(元/千克)與處理數(shù)量(千克)滿足一次函數(shù)關(guān)系(),且得到表中數(shù)據(jù).
(千克) | (元/千克) |
200 | 350 |
400 | 300 |
(1)請求出處理價格(元千克)與處理數(shù)量(千克)之間的函數(shù)關(guān)系;
(2)若產(chǎn)品生產(chǎn)成本為100元千克,產(chǎn)品處理數(shù)量為多少千克時,生產(chǎn)產(chǎn)品數(shù)量最多,最多是多少?
(3)由于改進技術(shù),產(chǎn)品的生產(chǎn)成本降低到了元/千克,設(shè)全部產(chǎn)品全部售出,所得總利潤為(元),若時,滿足隨的增大而減小,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于,點兩點,交軸于點.
(1)求、的值.
(2)請根據(jù)圖象直接寫出不等式的解集.
(3)軸上是否存在一點,使得以、、三點為頂點的三角形是為腰的等腰三角形,若存在,請直接寫出符合條件的點的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com