【題目】如圖,將一個(gè)等腰Rt△ABC對(duì)折,使∠A與∠B重合,展開后得折痕CD,再將∠A折疊,使C落在AB上的點(diǎn)F處,展開后,折痕AE交CD于點(diǎn)P,連接PF、EF,下列結(jié)論:①tan∠CAE=﹣1;②圖中共有4對(duì)全等三角形;③若將△PEF沿PF翻折,則點(diǎn)E一定落在AB上;④PC=EC;⑤S四邊形DFEP=S△APF.正確的個(gè)數(shù)是( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】C

【解析】試題解析:①正確.作EMABACM.

CA=CB,ACB=90°,

∴∠CAB=CBA=45°,

∵∠CAE=BAE=CAB=22.5°,

∴∠MEA=EAB=22.5°,

∴∠CME=45°=CEM,設(shè)CM=CE=a,則ME=AM=a,

tanCAE=,故①正確,

②正確.CDA≌△CDB,AEC≌△AEF,APC≌△APF,PEC≌△PEF,故②正確,

③正確.∵△PEC≌△PEF,

∴∠PCE=PFE=45°,

∵∠EFA=ACE=90°,

∴∠PFA=PFE=45°,

∴若將PEF沿PF翻折,則點(diǎn)E一定落在AB上,故③正確.

④正確.∵∠CPE=CAE+ACP=67.5°,CEP=90°﹣CAE=67.5°,

∴∠CPE=CEP,

CP=CE,故④正確,

⑤錯(cuò)誤.∵△APC≌△APF,

SAPC=SAPF,

假設(shè)SAPF=S四邊形DFPE,則SAPC=S四邊形DFPE,

SACD=SAEF,

SACD=SABC,SAEF=SAECSABC,

∴矛盾,假設(shè)不成立.

故⑤錯(cuò)誤.

.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展電信事業(yè),方便用戶,電信公司對(duì)移動(dòng)電話采取不同的收費(fèi)方式,其中,所使用的便民卡如意卡在某市范圍內(nèi)每月(30天)的通話時(shí)間x(min)與通話費(fèi)y(元)的關(guān)系如圖所示:

(1)分別求出通話費(fèi)y1,y2與通話時(shí)間x之間的函數(shù)關(guān)系式;

(2)請(qǐng)幫用戶計(jì)算,在一個(gè)月內(nèi)使用哪一種卡便宜.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上,點(diǎn) A 的初始位置表示的數(shù)為 1,現(xiàn)點(diǎn) A 做如下移動(dòng):第 1 次點(diǎn) A 向左移動(dòng) 3 個(gè)單位長(zhǎng)度至點(diǎn) A1,第 2 次從點(diǎn) A1 向右移動(dòng) 6 個(gè)單位長(zhǎng)度至點(diǎn) A2,第 3 次從點(diǎn) A2 向左移動(dòng) 9 個(gè)單位長(zhǎng)度至點(diǎn) A3,…,按照這種移動(dòng)方式進(jìn)行下去,點(diǎn) A4 表示的數(shù),是__________ ,如果點(diǎn) An 與原點(diǎn)的距離不小于 20, 那么 n 的最小值是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且|a|=|c|.

(1)若|a+c|+|b|=2,求b的值;

(2)用“>”從大到小把a(bǔ),b,﹣b,c連接起來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的文字,解答問題

大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,但是由于,所以的整數(shù)部分為1,將減去其整數(shù)部分1,所得的差就是其小數(shù)部分,根據(jù)以上的內(nèi)容,解答下面的問題:

的整數(shù)部分是______,小數(shù)部分是______;

的整數(shù)部分是______,小數(shù)部分是______;

整數(shù)部分是______,小數(shù)部分是______;

若設(shè)整數(shù)部分是x,小數(shù)部分是y,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、EADCE交于點(diǎn)H,請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件:_____________,使△AEH≌△CEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一個(gè)四邊形紙片ABCD,∠B=∠D=90°,把紙片按如圖所示折疊,使點(diǎn)B落在AD邊上的B'點(diǎn),AE是折痕。

(1)試判斷B'E與DC的位置關(guān)系并說明理由。

(2)如果∠C=130°,求∠AEB的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列文字:

我們知道,對(duì)于一個(gè)圖形,通過兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式,例如由圖1可以得到(a+2b)(a+b)=a2+3ab+2b2.請(qǐng)解答下列問題:

(1)寫出圖2中所表示的數(shù)學(xué)等式_____;

(2)利用(1)中所得到的結(jié)論,解決下面的問題:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;

(3)圖3中給出了若干個(gè)邊長(zhǎng)為a和邊長(zhǎng)為b的小正方形紙片及若干個(gè)邊長(zhǎng)分別為a、b的長(zhǎng)方形紙片,

請(qǐng)按要求利用所給的紙片拼出一個(gè)幾何圖形,并畫在圖3所給的方框中,要求所拼出的幾何圖形的面積為2a2+5ab+2b2

再利用另一種計(jì)算面積的方法,可將多項(xiàng)式2a2+5ab+2b2分解因式.即2a2+5ab+2b2=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】折疊三角形紙片ABC,使點(diǎn)A落在BC邊上的點(diǎn)F,且折痕DEBC,若∠A=75°,C=60°,則∠BDF=____________________________

查看答案和解析>>

同步練習(xí)冊(cè)答案