【題目】閱讀下面的文字,解答問題
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,但是由于,所以的整數(shù)部分為1,將減去其整數(shù)部分1,所得的差就是其小數(shù)部分,根據(jù)以上的內(nèi)容,解答下面的問題:
的整數(shù)部分是______,小數(shù)部分是______;
的整數(shù)部分是______,小數(shù)部分是______;
整數(shù)部分是______,小數(shù)部分是______;
若設(shè)整數(shù)部分是x,小數(shù)部分是y,求的值.
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)()×(﹣36); (2)[2﹣5×(﹣)2]÷(﹣);
(3)1×﹣(﹣ )×2+(﹣ )÷1 ; (4)﹣14﹣[1﹣(1﹣0.5× )×6]
(5); (6)-22+(1-×0.2)÷(-2)3.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校辦公樓前有一長為,寬為的長方形空地,在中心位置留出一個直徑為 的圓形區(qū)域建一個噴泉,兩邊是兩塊長方形的休息區(qū),陰影部分為綠地.
(1)用含字母和的式子表示陰影部分的面積;
(2)當=8,=6,=1,=2時,陰影部分的面積是多少?(取 3.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有理數(shù) a、b、c 在數(shù)軸上的位置如圖所示:
(1)比較 a、|b|、c 的大。ㄓ“<”連接);
(2)若 m=|a+b|﹣|b﹣1|﹣|a﹣c|,求 1﹣2013(m+c)2013 的值;
(3)若 a=﹣2,b=﹣3,c=,且 a、b、c 對應(yīng)的點分別為 A、B、C,問在數(shù)軸上是否存在一點 P,使 P 與 A 的距離是 P 與 C 的距離的 3 倍?若存在,請求出 P 點對應(yīng)的有理數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△A1B1C1,△A2B2C2的周長相等,現(xiàn)有兩個判斷:
①若A1B1=A2B2,A1C1=A2C2,則△A1B1C1≌△A2B2C2;
②若∠A1=∠A2,∠B1=∠B2,則△A1B1C1≌△A2B2C2,
對于上述的兩個判斷,下列說法正確的是( )
A. ①正確,②錯誤 B. ①錯誤,②正確 C. ①,②都錯誤 D. ①,②都正確
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一個等腰Rt△ABC對折,使∠A與∠B重合,展開后得折痕CD,再將∠A折疊,使C落在AB上的點F處,展開后,折痕AE交CD于點P,連接PF、EF,下列結(jié)論:①tan∠CAE=﹣1;②圖中共有4對全等三角形;③若將△PEF沿PF翻折,則點E一定落在AB上;④PC=EC;⑤S四邊形DFEP=S△APF.正確的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從一張腰長為60cm,頂角為120°的等腰三角形鐵皮OAB中剪出一個最大的扇形OCD,用此剪下的扇形鐵皮圍成一個圓錐的側(cè)面(不計損耗),則該圓錐的高為( 。
A.10cm
B.15cm
C.10 cm
D.20 cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某運算程序,該程序是循環(huán)迭代的一種.根據(jù)該程序的指令,如果輸入的值是10,那么得到第1次輸出的值是5;把第1次輸出的值再次輸入,那么第2次輸出的值是6;把第2次輸出的值再次輸入,那么第3次輸出的值是3;…,第2018次輸出的值是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有筐白菜,以每筐千克為標準,超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負數(shù),稱后的記錄如下:
回答下列問題:
(1)這筐白菜中,最接近千克的那筐白菜為 千克;
(2)若白菜每千克售價元,則出售這8筐白菜可賣多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com