【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于點(diǎn)D.點(diǎn)P從點(diǎn)D 出發(fā),沿線段DC向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),沿線段CA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長(zhǎng)度,當(dāng)點(diǎn)P運(yùn)動(dòng)到C時(shí),兩點(diǎn)都停止.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求線段CD的長(zhǎng);
(2)當(dāng)t為何值時(shí),△CPQ是直角三角形?
(3)是否存在某一時(shí)刻,使得PQ分△ACD的面積為1:11?若存在,求出t的值,若不存在,請(qǐng)說明理由.
【答案】(1)CD=;(2)t為3秒或秒;(3)當(dāng),時(shí)使得PQ分△ACD的面積為1:11.
【解析】
(1)先利用勾股定理求出AB=10,進(jìn)利用面積法求出CD;
(2)先表示出CP,再判斷出∠ACD=∠B,進(jìn)而分兩種情況,利用相似三角形得出比例式建立方程求解,即可得出結(jié)論;
(3)先判斷出△CEQ∽△CDA,得出,進(jìn)而表示出QE=t,再分當(dāng)S△CPQ=S△ACD時(shí),和當(dāng)S△CPD=S△ACD時(shí),利用面積建立方程求解即可得出結(jié)論.
(1)在Rt△ABC中,根據(jù)勾股定理得,AB=
∵S△ABC=ACBC=ABCD,
∴CD=,
(2)由(1)知,CD=,
由運(yùn)動(dòng)知,CQ=t,DP=t,
∴CP=CDDP=t,
∵∠ACB=90°,
∴∠ACD+∠BCD=90°,
∵CD⊥AB,
∴∠B+∠BCD=90°,
∴∠ACD=∠B,
∵△CPQ與△ABC相似,
①當(dāng)∠CPQ=90°時(shí),△CPQ∽△BCA,
∴,
∴
∴t=3
②當(dāng)∠CQP=90°時(shí),△CPQ∽△BAC,
∴,
∴
∴t=,
即:t為3秒或秒時(shí),△CPQ與△ABC相似.
(3)假設(shè)存在,如圖,
Rt△ACD中,根據(jù)勾股定理得,AD=,
過點(diǎn)Q作CE⊥CD于E,
∴QE∥AD,
∴△CEQ∽△CDA,
∴,
∴
∴QE=
∵S△CPQ=CPQE=()
∴S△ACD=ADCD=××,
∵PQ分△ACD的面積為1:11,
∴①當(dāng)S△CPQ=S△ACD時(shí),
∴(t)=×××,
∴5t224t+16=0,
∴
②當(dāng)S△CPD=S△ACD時(shí),
∴(t)=×××,
∴5t224t+176=0,而△2424×5×176=5763520<0,
此方程無解,即:此種情況不存在,
綜上所述,當(dāng)t=或4時(shí),PQ分△ACD的面積為1:11.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使DC=BD,連結(jié)AC交⊙O于點(diǎn)F.
(1)AB與AC的大小有什么關(guān)系?請(qǐng)說明理由;
(2)若AB=8,∠BAC=45°,求:圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于的方程.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為,(其中),若是關(guān)于的函數(shù),且,求這個(gè)函數(shù)的解析式;
(3)將(2)中所得的函數(shù)的圖象在直線的左側(cè)部分沿直線翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象.請(qǐng)你結(jié)合這個(gè)新的圖象回答:當(dāng)關(guān)于的函數(shù)的圖象與此圖象有兩個(gè)公共點(diǎn)時(shí),的取值范圍是 (直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)已知:ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程的兩個(gè)實(shí)數(shù)根.
(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);
(2)若AB的長(zhǎng)為2,那么ABCD的周長(zhǎng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的對(duì)稱軸為直線,且經(jīng)、兩點(diǎn).
求拋物線的解析式;
在拋物線的對(duì)稱軸上,是否存在點(diǎn),使它到點(diǎn)的距離與到點(diǎn)的距離之和最小,如果存在求出點(diǎn)的坐標(biāo),如果不存在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,已知O是坐標(biāo)原點(diǎn),B、C兩點(diǎn)的坐標(biāo)分別為(3,-1)、(2,1)。
(1)以O(shè)點(diǎn)為位似中心在y軸的左側(cè)將△OBC放大到兩倍畫出圖形。
(2)寫出B、C兩點(diǎn)的對(duì)應(yīng)點(diǎn)B、C的坐標(biāo);
(3)如果△OBC內(nèi)部一點(diǎn)M的坐標(biāo)為(x,y),寫出M的對(duì)應(yīng)點(diǎn)M的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中裝有(除顏色外)完全相同的紅色小球1個(gè),白色小球1個(gè)和黃色小球2個(gè),
(1)從中先摸出一個(gè)小球,記錄下它的顏色后,將它放回袋中攪勻,再摸出一個(gè)小球,記錄下顏色. 求摸出的兩個(gè)小球的顏色恰好是“一紅一黃”的概率是多少?
(2)如果摸出第一個(gè)小球之后不放回袋中,再摸出第二個(gè)小球,這時(shí)摸出的兩個(gè)小球的顏色恰好是“一紅一黃”的概率是多少?
(3)小明想給袋中加入一些紅色的小球,使從袋中任意摸出一個(gè)小球恰為紅色的概率為,請(qǐng)你幫小明算一算,應(yīng)該加入多少個(gè)紅色的小球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,每人射擊10次,成績(jī)分別如下:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
(1)填空:a= ;b= ;c= ;
(2)從平均數(shù)和中位數(shù)的角度來比較,成績(jī)較好的是 ;(填“甲”或“乙”)
(3)若需從甲、乙兩名隊(duì)員中選擇一人參加比賽,你認(rèn)為選誰更加合適?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個(gè)不透明的布袋,甲袋中裝有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字0,1,2;乙袋中裝有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字﹣1,﹣2,0;現(xiàn)從甲袋中隨機(jī)抽取一個(gè)小球,記錄標(biāo)有的數(shù)字為x,再?gòu)囊掖须S機(jī)抽取一個(gè)小球,記錄標(biāo)有的數(shù)字為y,確定點(diǎn)M坐標(biāo)為(x,y).
(1)用樹狀圖或列表法列舉點(diǎn)M所有可能的坐標(biāo);
(2)求點(diǎn)M(x,y)在函數(shù)y=﹣x+1的圖象上的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com