【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,拋物線x軸負(fù)半軸于點A,交x軸正半軸于點B,交y軸負(fù)半軸于點C,

求拋物線的解析式;

D在拋物線在第一象限的部分上,連接BCDC,過點Dx軸的垂線,點E為垂足,的正切值等于的正切值的一半,求點D的坐標(biāo);

的條件下,橫坐標(biāo)為t的點P在拋物線在第四象限的部分上,PB的延長線交DE于點F,連接BD,OF交于點G,連接EG,若GB平分,求t值.

【答案】(1);(2);(3)t的值為2

【解析】

先確定,,然后利用待定系數(shù)法求拋物線解析式;

H,如圖1,設(shè),再解方程,利用正切的定義得到,則,然后解方程求出x即可得到D點坐標(biāo);

如圖2,先利用待定系數(shù)法求出直線BD的解析式為,設(shè),再利用角平分線的性質(zhì)定理得到GO::BE,則,所以,解方程得到,接著求出直線BDOG的交點F的坐標(biāo)為,然后利用待定系數(shù)法求出直線BF的解析式為,最后解方程組t的值.

,

,,

,代入,解得

拋物線解析式為;

H,如圖1,

設(shè),

當(dāng)時,,解得,,則,

中,,

的正切值等于的正切值的一半

,

中,,

,解得得,則;

如圖2,

設(shè)直線BD的解析式為,

,代入得,解得

直線BD的解析式為,

設(shè),

平分,

:BE,

GO::2,

,

整理得,解得,,

,

易得直線OF的解析式為,

當(dāng)時,,則,

設(shè)直線BF的解析式為

,代入得,解得

直線BF的解析式為,

解方程組

,

t的值為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了幫助本市一名患白血病的高中生,某班15名同學(xué)積極捐款,他們捐款數(shù)額如下表:

捐款的數(shù)額(單位:元)

5

10

20

50

100

人數(shù)(單位:個)

2

4

5

3

1

關(guān)于這15名同學(xué)所捐款的數(shù)額,下列說法正確的是

A.眾數(shù)是100 B.平均數(shù)是30 C.極差是20 D.中位數(shù)是20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】梧州市特產(chǎn)批發(fā)市場有龜苓膏粉批發(fā),其中A品牌的批發(fā)價是每包20元,B品牌的批發(fā)價是每包25元,小王需購買A,B兩種品牌的龜苓膏粉共1000包.

(1)若小王按需購買A,B兩種品牌龜苓膏粉共用22000元,則各購買多少包?

(2)憑會員卡在此批發(fā)市場購買商品可以獲得8折優(yōu)惠,會員卡費用為500元.若小王購買會員卡并用此卡按需購買1000包龜苓膏粉,共用了y元,設(shè)A品牌買了x包,請求出yx之間的函數(shù)關(guān)系式;

(3)(2)中,小王共用了20000元,他計劃在網(wǎng)店包郵銷售這批龜苓膏粉,每包龜苓膏粉小王需支付郵費8元,若每包銷售價格A品牌比B品牌少5元,請你幫他計算,A品牌的龜苓膏粉每包定價不低于多少元時才不虧本?(運算結(jié)果取整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校園安全”受到全社會的廣泛關(guān)注,“高遠(yuǎn)”中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了如下尚不完整的條形統(tǒng)計圖,且知在抽樣調(diào)查中“了解很少”的同學(xué)占抽樣調(diào)查人數(shù)的,請你根據(jù)提供的信息解答下列問題:

接受問卷調(diào)查的學(xué)生共有多少名?

請補(bǔ)全條形統(tǒng)計圖;

若“高遠(yuǎn)”中學(xué)共有1800名學(xué)生,請你估計該校學(xué)生對校園知識“基本了解”的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為∠BAC的外角平分線上一點,并且滿足BD=CD,過DDEACE,DFABBA的延長線于F,則下列結(jié)論:①;②∠DBC=DCB;③CE=AB+AE④∠BDC=BAC,其中正確的結(jié)論有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)投影后,小明、小穎利用燈光下自己的影子長度來測量一路燈的高度,并探究影子長度的變化規(guī)律.如圖所示,在同一時間,身高為1.6 m的小明(AB)的影子BC長是3m,而小穎(EH)剛好在路燈燈泡的正下方H點,并測得HB=6m.

(1)請在圖中畫出形成影子的光線,并確定路燈燈泡所在的位置G;

(2)求路燈燈泡的垂直高度GH;

(3)如果小明沿線段BH向小穎(H)走去,當(dāng)小明走到BH中點B1處時,求其影子B1C1的長;當(dāng)小明繼續(xù)走剩下的路程的B2處時,求其影子B2C2的長;當(dāng)小明繼續(xù)走剩下路程的B3處時,……按此規(guī)律繼續(xù)走下去,當(dāng)小明走剩下路程的處時,其影子的長為________m(直接用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:選取二次三項式中兩項,配成完全平方式的過程叫配方,配方的基本形式是完全平方公式的逆寫,即.例如:

①選取二次項和一次項配方:

②選取二次項和常數(shù)項配方:,或

③選取一次項和常數(shù)項配方:

請根據(jù)閱讀材料解決下列問題:

(1)比照上面的例子,將二次三項式配成完全平方式(直接寫出兩種形式);

(2)分解因式;

(3)已知、、的三邊長,且滿足,試判斷此三角形的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果∠A和∠B互補(bǔ),且∠A>∠B,給出下列四個式子:①90°﹣∠B;②∠A90°;③A+B;④(∠A﹣∠B),其中表示∠B余角的式子有(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一枚棋子放在邊長為1個單位長度的正六邊形

ABCDEF的頂點A處,通過摸球來確定該棋子的走法,其規(guī)則是:在

一只不透明的袋子中,裝有3個標(biāo)號分別為1、2、3的相同小球,攪勻

后從中任意摸出1個,記下標(biāo)號后放回袋中并攪勻,再從中任意摸出1

個,摸出的兩個小球標(biāo)號之和是幾棋子就沿邊按順時針方向走幾個單位

長度.

棋子走到哪一點的可能性最大?求出棋子走到該點的概率.(用列表或畫樹狀圖的方法

求解)

查看答案和解析>>

同步練習(xí)冊答案