【題目】如圖,⊙O為等腰三角形ABC的外接圓,AB=AC.AD是⊙O的直徑,切線DE與AC的延長(zhǎng)線相交于點(diǎn)E.
(1)求證:DE∥BC;
(2)若DF=n,∠BAC=2a,寫(xiě)出求CE長(zhǎng)的思路.

【答案】
(1)證明:∵AB=AC,

= ,

而AD為直徑,

∴AD垂直平分BC,

∵DE為切線,

∴AD⊥DE,

∴DE∥BC


(2)解:作CH⊥DE于H,如圖,易得四邊形CFDH為矩形,

∴CH=DF=n,

∵CH∥AD,

∴∠ECH=∠CAD=α,

在Rt△CEH中,∵cos∠ECH= ,

∴CE=


【解析】(1)由AB=AC得到 = ,則根據(jù)垂徑定理的推論得到AD垂直平分BC,再根據(jù)切線的性質(zhì)得AD⊥DE,然后根據(jù)平行線的判定方法可得DE∥BC;(2)作CH⊥DE于H,如圖,易得四邊形CFDH為矩形,則CH=DF=n,再利用平行線的性質(zhì)得∠ECH=∠CAD=α,然后在Rt△CEH中利用余弦的定義可計(jì)算出CE的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ACDE是證明勾股定理時(shí)用到的一個(gè)圖形,a、b、cRtABCRtBED邊長(zhǎng),易知AE=c這時(shí)我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱(chēng)為“勾系一元二次方程”.

請(qǐng)解決下列問(wèn)題

寫(xiě)出一個(gè)“勾系一元二次方程”;

求證關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根;

x=1是“勾系一元二次方程”ax+cx+b=0的一個(gè)根且四邊形ACDE的周長(zhǎng)是,ABC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小紅星期天從家里出發(fā)汽車(chē)去舅舅家做客,當(dāng)她騎了一段路時(shí),想起要買(mǎi)個(gè)禮物送給表弟,于是又折回到剛經(jīng)過(guò)的一家商店,買(mǎi)好禮物后又繼續(xù)騎車(chē)去舅舅家,以下是她本次去舅舅家所用的時(shí)間與路程的關(guān)系式示意圖.根據(jù)圖中提供的信息回答下列問(wèn)題:

(1)小紅家到學(xué)校的路程是______米,小紅在商店停留了______分鐘;

(2)在整個(gè)去舅舅家的途中哪個(gè)時(shí)間段小紅騎車(chē)速度最快?最快速度是多少米/分?

(3)本次去舅舅家的行程中,小紅一共行駛了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB,CD相交于點(diǎn)O,OA平分∠EOC.

(1)若∠EOC=80°,求∠BOD的度數(shù);

(2)若∠EOC=EOD,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五一期間,某商鋪經(jīng)營(yíng)某種旅游紀(jì)念品.該商鋪第一次批發(fā)購(gòu)進(jìn)該紀(jì)念品共花費(fèi)3 000元,很快全部售完.接著,該商鋪第二次批發(fā)購(gòu)進(jìn)該紀(jì)念品共花費(fèi)9000元.已知第二次所購(gòu)進(jìn)該紀(jì)念品的數(shù)量是第一次的2倍還多300個(gè),第二次的進(jìn)價(jià)比第一次的進(jìn)價(jià)提高了20%.

(1)求第一次購(gòu)進(jìn)該紀(jì)念品的進(jìn)價(jià)是多少元?

(2)若該紀(jì)念品的兩次售價(jià)均為9/個(gè),兩次所購(gòu)紀(jì)念品全部售完后,求該商鋪兩次共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝有僅顏色不同的黑、白兩種顏色的球20只,某學(xué)習(xí)小組做摸球?qū)嶒?yàn).將球攪勻后從中隨機(jī)摸出一個(gè)球,記下顏色,再把它放回袋中,不斷重復(fù),下表是活動(dòng)進(jìn)行中記下的一組數(shù)據(jù)

摸球的次數(shù)

100

150

200

500

800

1000

摸到白球的次數(shù)

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

(1)請(qǐng)你估計(jì),當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近 (精確到0.1).

(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是

(3)試估算口袋中黑、白兩種顏色的球有多少只.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】企業(yè)舉行愛(ài)心一日捐活動(dòng),捐款金額分為五個(gè)檔次,分別是50元,100元,150元,200元,300元.宣傳小組隨機(jī)抽取部分捐款職工并統(tǒng)計(jì)了他們的捐款金額,繪制成兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖表中的信息解答下列問(wèn)題:

1)宣傳小組抽取的捐款人數(shù)為_____人,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

2)在扇形統(tǒng)計(jì)圖中,求100元所對(duì)應(yīng)扇形的圓心角的度數(shù);

3)已知該企業(yè)共有500人參與本次捐款,請(qǐng)你估計(jì)捐款總額大約為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】網(wǎng)癮低齡化問(wèn)題已經(jīng)引起社會(huì)各界的高度關(guān)注,有關(guān)部門(mén)在全國(guó)范圍內(nèi)對(duì)12﹣35歲的網(wǎng)癮人群進(jìn)行了簡(jiǎn)單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中的信息,回答下列問(wèn)題:
(1)這次抽樣調(diào)查中共調(diào)查了人;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中18﹣23歲部分的圓心角的度數(shù)是;
(4)據(jù)報(bào)道,目前我國(guó)12﹣35歲網(wǎng)癮人數(shù)約為2000萬(wàn),請(qǐng)估計(jì)其中12﹣23歲的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是ABCD的一條對(duì)角線.AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F.求證:∠DAE=∠BCF.

查看答案和解析>>

同步練習(xí)冊(cè)答案