【題目】企業(yè)舉行愛心一日捐活動,捐款金額分為五個檔次,分別是50元,100元,150元,200元,300元.宣傳小組隨機抽取部分捐款職工并統(tǒng)計了他們的捐款金額,繪制成兩個不完整的統(tǒng)計圖,請結(jié)合圖表中的信息解答下列問題:

1)宣傳小組抽取的捐款人數(shù)為_____人,請補全條形統(tǒng)計圖;

2)在扇形統(tǒng)計圖中,求100元所對應(yīng)扇形的圓心角的度數(shù);

3)已知該企業(yè)共有500人參與本次捐款,請你估計捐款總額大約為多少元?

【答案】50(2) 72°(3) 84000

【解析】試題分析:(1)根據(jù)題意即可得到結(jié)論;求得捐款200元的人數(shù)即可補全條形統(tǒng)計圖;

(2)用周角乘以100元所占的百分比即可求得圓心角;

(3)根據(jù)題意即可得到結(jié)論.

試題解析:112÷24%=50(人)

補圖如下:

2×360°=72°

350×4+100×10+150×12+200×18+300×6×500=84000(元).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,ECD邊上一點,FBC延長線上一點,CE=CFFDC=30°,求∠BEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在圖1至圖3中,點B是線段AC的中點,點D是線段CE的中點。四邊形BCGFCDHN都是正方形。AE的中點是M,FH的中點是P。

1如圖1,點A、C、E在同一條直線上,根據(jù)圖形填空:

①△BMF__________三角形;

MPFH的位置關(guān)系是___________;MPFH的數(shù)量關(guān)系是____________

2將圖1中的CE繞點C順時針旋轉(zhuǎn)一個銳角,得到圖2,解答下列問題:

證明:BMF是等腰三角形;

1)中得到的MPFH的位置關(guān)系和數(shù)量關(guān)系是否仍然成立?證明你的結(jié)論;

3將圖2中的CE縮短到圖3的情況,(2)中的三個結(jié)論還成立嗎?(成立的不需要說明理由,不成立的需要說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O為等腰三角形ABC的外接圓,AB=AC.AD是⊙O的直徑,切線DE與AC的延長線相交于點E.
(1)求證:DE∥BC;
(2)若DF=n,∠BAC=2a,寫出求CE長的思路.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線y=﹣3x+3與x軸、y軸分別父于A、B兩點,點A關(guān)于直線x=﹣1的對稱點為點C.
(1)求點C的坐標;
(2)若拋物線y=mx2+nx﹣3m(m≠0)經(jīng)過A、B、C三點,求拋物線的表達式;
(3)若拋物線y=ax2+bx+3(a≠0)經(jīng)過A,B兩點,且頂點在第二象限.拋物線與線段AC有兩個公共點,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,對角線ACBD相交于點O,ECD中點,連結(jié)OE.過點CCFBD交線段OE的延長線于點F,連結(jié)DF.求證:

(1)ODE≌△FCE;

(2)四邊形ODFC是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點O是正方形ABCD兩對角線的交點. 分別延長OD到點G,OC到點E,使OG=2ODOE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE

(1)求證:DEAG;

(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)角(0°< <360°)得到正方形,如圖2.

①在旋轉(zhuǎn)過程中,當∠是直角時,求的度數(shù);(注明:當直角邊為斜邊一半時,這條直角邊所對的銳角為30度)

②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求長的最大值和此時的度數(shù),直接寫出結(jié)果不必說明理由.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校有500名學生.為了解全校每名學生的上學方式,該校數(shù)學興趣小組在全校隨機抽取了100名學生進行抽樣調(diào)查.整理樣本數(shù)據(jù),得到扇形統(tǒng)計圖如右圖:

(1)本次調(diào)查的個體是 ,樣本容量是 ;

(2)扇形統(tǒng)計圖中,乘私家車部分對應(yīng)的圓心角是 度;

(3)請估計該校500名學生中,選擇騎車和步行上學的一共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列一段文字,再解答問題
已知在平面內(nèi)有兩點,,其兩點間的距離公式為,同時,當兩點所在的直線在坐標軸上或平行于坐標軸或垂直于坐標軸時,兩點間距離公式可簡化為
已知點,,試求A,B兩點間的距離;
已知點A,B在平行于y軸的直線上,點A的縱坐標為5,點B的縱坐標為,試求AB兩點間的距離;
已知點,,判斷線段AB,BC,AC中哪兩條是相等的?并說明理由.

查看答案和解析>>

同步練習冊答案