【題目】數(shù)學(xué)興趣小組成員張廣益對(duì)本年級(jí)期中考試數(shù)學(xué)成績(成績?nèi)≌麛?shù),滿分為100分)做了統(tǒng)計(jì)分析,繪制成如下頻數(shù)、頻率分布表和頻數(shù)分布直方圖.請(qǐng)你根據(jù)圖表提供的信息,解答下列問題:
⑴填充頻率分布表中的空格:a ,b ,c ;
⑵補(bǔ)全頻率分布直方圖;
⑶已知本年級(jí)共計(jì)1700名學(xué)生,若競賽成績?cè)?/span>90分以上(不含90分)為優(yōu)秀,估算本年級(jí)數(shù)學(xué)成績優(yōu)秀的學(xué)生約有多少人?
【答案】(1) 12,0.24,50;(2)見詳解;(3)408.
【解析】
(1)由頻數(shù)和頻率分布表的第一組數(shù),可得隨機(jī)抽取的學(xué)生共有:頻數(shù)÷頻率=4÷0.08=50;
下面的空格中的數(shù)字運(yùn)用公式:頻數(shù)÷頻率=50,求解即可;
頻數(shù)分布直方圖利用頻數(shù)和頻率分布表中的數(shù)值作圖即可.
(2)根據(jù)題中的圖和表可以看出,樣本是50名同學(xué)期中考試數(shù)學(xué)成績情況;樣本容量上一問已求出為50.
(3)若成績?cè)?/span>90分以上(含90分)為優(yōu)秀,則這隨機(jī)抽取的50個(gè)人中優(yōu)秀的頻率為0.24,
所以,1700名同學(xué)的優(yōu)秀率為0.24,
所以,該校成績優(yōu)秀的同學(xué)為1700×0.24=408.
解:(1)解:∵40.08=50.
∴c=50.a=50-4-8-10-16=12
∴b=12=0.24.
故答案為:12,0.24,50.
(2)如圖:
(4)∵17000.24=408(人)
∴該校約有408名同學(xué)成績優(yōu)秀.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,點(diǎn)A(1,8),B(1,6),C(7,6).
(1)請(qǐng)直接寫出點(diǎn)D的坐標(biāo);
(2)連接線段OB,OD,BD,請(qǐng)求出△OBD的面積;
(3)若長方形ABCD以每秒1個(gè)單位長度的速度向下運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,是否存在某一時(shí)刻,使△OBD的面積與長方形ABCD的面積相等?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.
甲公司方案:每月的養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.
乙公司方案:綠化面積不超過1000平方米時(shí),每月收取費(fèi)用5500元;綠化面積超過1000平方米時(shí),每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4元.
(1)求如圖所示的y與x的函數(shù)解析式;(不要求寫取值范圍)
(2)如果某學(xué)校目前的綠化面積是1200平方米.試通過計(jì)算說明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費(fèi)用較少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(﹣1,0),B(2,0),交y軸于C(0,﹣2),過A,C畫直線.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P在x軸正半軸上,且PA=PC,求OP的長;
(3)點(diǎn)M在二次函數(shù)圖象上,以M為圓心的圓與直線AC相切,切點(diǎn)為H.
①若M在y軸右側(cè),且△CHM∽△AOC(點(diǎn)C與點(diǎn)A對(duì)應(yīng)),求點(diǎn)M的坐標(biāo);
②若⊙M的半徑為,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,點(diǎn)分別是線段的中點(diǎn),分別是線段的中點(diǎn),當(dāng)四邊形的邊滿足___________________時(shí),四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:平行四邊形的面積=(底邊)×(這條底邊上的高).如圖,四邊形ABCD都是平行四邊形,AD∥BC,AB∥CD,設(shè)它的面積為S.
(1)如圖①,點(diǎn)M為AD上任意一點(diǎn),若△BCM的面積為S1,則S1:S= ;
(2)如圖②,點(diǎn)P為平行四邊形ABCD內(nèi)任意一點(diǎn)時(shí),記△PAB的面積為Sˊ,△PCD的面積為S〞,平行四邊形ABCD的面積為S,猜想得Sˊ、S〞的和與S的數(shù)量關(guān)系式為 ;
(3)如圖③,已知點(diǎn)P為平行四邊形ABCD內(nèi)任意一點(diǎn),△PAB的面積為3,△PBC的面積為7,求△PBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為,頂點(diǎn)C在x軸的正半軸上,則的角平分線所在直線的函數(shù)關(guān)系式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新知:對(duì)角線垂直的四邊形兩組對(duì)邊的平方和相等
感知與認(rèn)證:如圖1,2,3中,四邊形ABCD中于O,如圖1,AC與BD相互平分,如圖2,AC平分BD,結(jié)論顯然成立.
認(rèn)知證明:(1)請(qǐng)你證明如圖3中有成立。
發(fā)現(xiàn)應(yīng)用:(2)如圖4,若AF,BE是三角形ABC的中線,垂足為P
已知:,,求AB的長
拓展應(yīng)用:(3)如圖5,在平行四邊形ABCD中,點(diǎn)E,F,G分別是AD,BC,CD的中點(diǎn),,,.求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于F,連接CF.
(1)求證:AD=AF;
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com