【題目】如圖,是矩形內(nèi)一點(diǎn),于點(diǎn),于點(diǎn),.
請(qǐng)判斷四邊形是否是正方形?若是,寫出證明過程:若不是,說明理由;
延長(zhǎng)到點(diǎn),使,連接交的延長(zhǎng)線于點(diǎn),求的度數(shù).
【答案】四邊形為正方形,理由見解析;(2)
【解析】
(1)由四邊形ABCD為矩形可得∠ABC=90°,易得∠ABP+∠PBC=90°,由AP⊥BP,可得∠ABP+∠PAB=90°,易得∠PBC=∠PAB,由AAS定理可得△ABP≌△BCE,由全等三角形的性質(zhì)可得AB=BC,易得結(jié)論;
(2)連接AC,由△ABP≌△BCE易得AP=BE,又CF=BE,可得AP=CF,易得四邊形ACGP是平行四邊形,可得∠ACB=∠BGC,由四邊形ABCD是正方形,AC是對(duì)角線,可得∠ACB=∠BGP=45°.
解:四邊形為正方形.
∵四邊形是矩形,
∴,
即,
∵,
∴,
∴,
∵,
∴,
在與中,
,
∴≌,
∴,
∴矩形為正方形;
連接,
∵,
∴,
∵,
∴,
∵,,
∴,
∴四邊形是平行四邊形,
∴,
∴,
∵四邊形是正方形,是對(duì)角線,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(﹣1,0),C(2,3)兩點(diǎn),與y軸交于點(diǎn)N.其頂點(diǎn)為D.
(1)拋物線及直線AC的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)M(3,m),求使MN+MD的值最小時(shí)m的值;
(3)若拋物線的對(duì)稱軸與直線AC相交于點(diǎn)B,E為直線AC上的任意一點(diǎn),過點(diǎn)E作EF∥BD交拋物線于點(diǎn)F,以B,D,E,F為頂點(diǎn)的四邊形能否為平行四邊形?若能,求點(diǎn)E的坐標(biāo);若不能,請(qǐng)說明理由;
(4)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若△ABC內(nèi)一點(diǎn)P,滿足∠PAB=∠PBC=∠PCA=α,則稱點(diǎn)P為△ABC的布洛卡點(diǎn).通過研究一些特殊三角形中的布洛卡點(diǎn),得到如下兩個(gè)結(jié)論:
①若∠BAC=90°,則必有∠APC=90°;②若AB=AC,則必有∠APB=∠BPC.
對(duì)于這兩個(gè)結(jié)論,下列說法正確的是( 。
A.①對(duì),②錯(cuò)B.①錯(cuò),②對(duì)C.①,②均錯(cuò)D.①,②均對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點(diǎn)E、F,若點(diǎn)D為底邊BC的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則△BDM的周長(zhǎng)的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于點(diǎn)O,E為AC上一點(diǎn),且AE=OC.
(1)求證:AP=AO;
(2)求證:PE⊥AO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某莊有甲、乙兩家草莓采摘園的草莓銷售價(jià)格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買門票,采摘的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費(fèi)用為(元),在乙園所需總費(fèi)用為(元),、與之間的函數(shù)關(guān)系如圖所示.
(1)甲采摘園的門票是_____元,兩個(gè)采摘園優(yōu)惠前的草莓單價(jià)是每千克____元;
(2)當(dāng)時(shí),求與的函數(shù)表達(dá)式;
(3)游客在“春節(jié)期間”采摘多少千克草莓時(shí),甲、乙兩家采摘園的總費(fèi)用相同.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( )
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)貿(mào)市場(chǎng)擬建兩間長(zhǎng)方形儲(chǔ)藏室,儲(chǔ)藏室的一面靠墻(墻長(zhǎng)30m),中間用一面墻隔開,如圖所示,已知建筑材料可建墻的長(zhǎng)度為42m,則這兩間長(zhǎng)方形儲(chǔ)藏室的總占地面積的最大值為_______m2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com