【題目】已知關(guān)于的方程有實數(shù)根,則滿足________.
【答案】
【解析】
需分類討論:①當(dāng)關(guān)于x的方程(k-1)x2-(2k+3)x+(k+3)=0是一元一次方程時,根據(jù)一元一次方程的定義,列出關(guān)于k的方程,求得k值;②當(dāng)關(guān)于x的方程(k-1)x2-(2k+3)x+(k+3)=0是一元二次方程時:由關(guān)于x的方程(k-1)x2-(2k+3)x+(k+3)=0有實數(shù)根,得到△=b2-4ac≥0;據(jù)此列出關(guān)于k的不等式組,通過解不等式組求得k的取值范圍即可.
①當(dāng)關(guān)于x的方程(k-1)x2-(2k+3)x+(k+3)=0是一元一次方程時,
k1=0,解得k=1;
②當(dāng)關(guān)于x的方程(k-1)x2-(2k+3)x+(k+3)=0是一元二次方程時。
∵關(guān)于x的方程(k-1)x2-(2k+3)x+(k+3)=0有實數(shù)根,
∴ ,
解得:k≥
故答案為:k≥.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在□ABCD中,,,,射線AE平分動點P以的速度沿AD向終點D運動,過點P作交AE于點Q,過點P作,過點Q作,交PM于點設(shè)點P的運動時間為,四邊形APMQ與四邊形ABCD重疊部分面積為
______用含t的代數(shù)式表示
當(dāng)點M落在CD上時,求t的值.
求S與t之間的函數(shù)關(guān)系式.
如圖2,連結(jié)AM,交PQ于點G,連結(jié)AC、BD交于點H,直接寫出t為何值時,GH與三角形ABD的一邊平行或共線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高爾夫球手基礎(chǔ)的高爾夫球的運動路線是一條拋物線,當(dāng)球水平運動了時達到最高點.落球點比擊球點的海拔低,水平距離為.
建立適當(dāng)?shù)淖鴺?biāo)系,求高度關(guān)于水平距離的二次函數(shù)式;
與擊球點相比,運動到最高點時有多高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是矩形內(nèi)一點,于點,于點,.
請判斷四邊形是否是正方形?若是,寫出證明過程:若不是,說明理由;
延長到點,使,連接交的延長線于點,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2分)矩形的一內(nèi)角平分線把矩形的一條邊分成3和5兩部分,則該矩形的周長是()
A. 16 B. 22或16 C. 26 D. 22或26
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,∠B=30°,BC邊上有一點P(不與點B,C重合),I為△APC的內(nèi)心,若∠AIC的取值范圍為m°<∠AIC<n°,則m+n=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件。設(shè)每件商品降價元。據(jù)此規(guī)律,請回答:
(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。
(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣2x2+5x﹣2.
(1)寫出該函數(shù)的對稱軸,頂點坐標(biāo);
(2)求該函數(shù)與坐標(biāo)軸的交點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=﹣x2+4x+c的圖象經(jīng)過A(1,y1),B(﹣1,y2),C(2+ ,y3)三點,則y1、y2、y3的大小關(guān)系是( )
A. y1<y2<y3 B. y1<y3<y2 C. y2<y3<y1 D. y2<y1<y3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com