【題目】已知△ABC中,點(diǎn)D是BC邊上一點(diǎn),以AD為直徑的⊙O與BC相切于點(diǎn)D,與AD、AC分別交于點(diǎn)E、F.
(1)如圖①,若∠AEF=52°,求∠C的度數(shù).
(2)如圖②,若EF經(jīng)過(guò)點(diǎn)O,且∠AEF=35°,求∠B的度數(shù).
【答案】(1)52°;(2)55°.
【解析】分析:(1)根據(jù)切線的性質(zhì)得:BC⊥AD,由圓周角定理得:∠AFD=90°,由同角的余角相等可得:∠C=∠ADF,由同弧所對(duì)的圓周角相等可得結(jié)論;
(2)同理得:∠ADB=90°,∠AEF+∠DEO=90°,求得∠DEO=55°,根據(jù)直徑和等腰三角形的性質(zhì)和三角形內(nèi)角和可得結(jié)論.
詳解:(1)如圖①,連接DF,
∵BC是⊙O的切線,∴BC⊥AD,∴∠ADC=90°,
∴∠FAD+∠C=90°.
∵AD是⊙O的直徑,∴∠AFD=90°,
∴∠FAD+∠ADF=90°,∴∠C=∠ADF,
∵∠AEF=∠ADF,∴∠C=∠AEF=52°;
(2)如圖②,連接ED.
∵BC與⊙O相切于點(diǎn)D,∴BC⊥AD,∴∠ADB=90°,∴∠ODE+∠EDB=90°.
∵AD是⊙O的直徑,∴∠AED=90°,
∴∠AEF+∠DEO=90°.
∵∠AEF=35°,∴∠DEO=55°,
∵AD是⊙O的直徑,EF經(jīng)過(guò)點(diǎn)O,∴EO=OD,∴∠ODE=∠OED=55°,
∵∠AED=90°,∴∠BED=90°,∴∠B+∠EDB=90°,∴∠B=∠ODE=55°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B、C三點(diǎn)在數(shù)軸上的位置如圖所示,它們表示的數(shù)分別是a、b、c
(1) 填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)
(2) 若|a|=2,且點(diǎn)B到點(diǎn)A、C的距離相等
① 當(dāng)b2=16時(shí),求c的值
② 求b、c之間的數(shù)量關(guān)系
③ P是數(shù)軸上B,C兩點(diǎn)之間的一個(gè)動(dòng)點(diǎn)設(shè)點(diǎn)P表示的數(shù)為x.當(dāng)P點(diǎn)在運(yùn)動(dòng)過(guò)程中,bx+cx+|x-c|-10|x+a|的值保持不變,求b的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對(duì)稱軸為x=,且經(jīng)過(guò)點(diǎn)(2,0),有下列說(shuō)法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是拋物線上的兩點(diǎn),則y1=y2.上述說(shuō)法正確的是( )
A.①②③④ B.③④ C.①③④ D.①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=6,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)30°后得到△A1BC1,則陰影部分的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題提出):分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b
(問(wèn)題探究):某數(shù)學(xué)“探究學(xué)習(xí)”小組對(duì)以上因式分解題目進(jìn)行了如下探究:
探究1:分解因式:(1)2x2+2xy﹣3x﹣3y
該多項(xiàng)式不能直接使用提取公因式法,公式法進(jìn)行因式分解.于是仔細(xì)觀察多項(xiàng)式的特點(diǎn).甲發(fā)現(xiàn)該多項(xiàng)式前兩項(xiàng)有公因式2x,后兩項(xiàng)有公因式﹣3,分別把它們提出來(lái),剩下的是相同因式(x+y),可以繼續(xù)用提公因式法分解.
解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x﹣3)
另:乙發(fā)現(xiàn)該多項(xiàng)式的第二項(xiàng)和第四項(xiàng)含有公因式y,第一項(xiàng)和第三項(xiàng)含有公因式x,把y、x提出來(lái),剩下的是相同因式(2x﹣3),可以繼續(xù)用提公因式法分解.
解:2x2+2xy﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x﹣3)(x+y)
探究2:分解因式:(2)a2﹣b2+4a﹣4b
該多項(xiàng)式亦不能直接使用提取公因式法,公式法進(jìn)行因式分解,于是若將此題按探究1的方法分組,將含有a的項(xiàng)分在一組即a2+4a=a(a+4),含有b的項(xiàng)一組即﹣b2﹣4b=﹣b(b+4),但發(fā)現(xiàn)a(a+4)與﹣b(b+4)再?zèng)]有公因式可提,無(wú)法再分解下去.于是再仔細(xì)觀察發(fā)現(xiàn),若先將a2﹣b2看作一組應(yīng)用平方差公式,其余兩項(xiàng)看作一組,提出公因式4,則可繼續(xù)再提出因式,從而達(dá)到分解因式的目的.
解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a﹣b)+4(a﹣b)=(a﹣b)(4+a+b)
(方法總結(jié)):對(duì)不能直接使用提取公因式法,公式法進(jìn)行分解因式的多項(xiàng)式,我們可考慮把被分解的多項(xiàng)式分成若干組,分別按“基本方法”即提取公因式法和運(yùn)用公式法進(jìn)行分解,然后,綜合起來(lái),再?gòu)目傮w上按“基本方法”繼續(xù)進(jìn)行分解,直到分解出最后結(jié)果.這種分解因式的方法叫做分組分解法.
分組分解法并不是一種獨(dú)立的因式分解的方法,而是通過(guò)對(duì)多項(xiàng)式進(jìn)行適當(dāng)?shù)姆纸M,把多項(xiàng)式轉(zhuǎn)化為可以應(yīng)用“基本方法”分解的結(jié)構(gòu)形式,使之具有公因式,或者符合公式的特點(diǎn)等,從而達(dá)到可以利用“基本方法”進(jìn)行分解因式的目的.
(學(xué)以致用):嘗試運(yùn)用分組分解法解答下列問(wèn)題:
(1)分解因式:
(2)分解因式:
(拓展提升):
(3)嘗試運(yùn)用以上思路分解因式:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工藝廠計(jì)劃一周生產(chǎn)工藝品2100個(gè),平均每天生產(chǎn)300個(gè),但實(shí)際每天生產(chǎn)量與計(jì)劃相比有出入.下表是某周的生產(chǎn)情況(超產(chǎn)記為正、減產(chǎn)記為負(fù)):
(1)寫出該廠星期一生產(chǎn)工藝品的數(shù)量;
(2)本周產(chǎn)量最多的一天比最少的一天多生產(chǎn)多少個(gè)工藝品?
(3)請(qǐng)求出該工藝廠在本周實(shí)際生產(chǎn)工藝品的數(shù)量;
(4)已知該廠實(shí)行每周計(jì)件工資制,每生產(chǎn)一個(gè)工藝品可得60元,若超額完成任務(wù),則超過(guò)部分每個(gè)另獎(jiǎng)50元,少生產(chǎn)一個(gè)扣80元.試求該工藝廠在這一周應(yīng)付出的工資總額.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,AO平分∠BAC,交CD于點(diǎn)O,E為AB上一點(diǎn),且AE=AC。
(1)求證:△AOC≌△AOE;
(2)求證:OE∥BC。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把8塊相同的小長(zhǎng)方形地磚拼成一塊大長(zhǎng)方形地磚.
(1)每塊小長(zhǎng)方形地磚的長(zhǎng)和寬分別是多少?(要求列方程組進(jìn)行解答)
(2)小明想用一塊面積為的正方形地毯,沿著邊的方向裁剪出一塊新的長(zhǎng)方形地毯,用來(lái)蓋住這塊大長(zhǎng)方形地磚你幫小明算一算,他能剪出符合要求的地毯?jiǎn)幔?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用“”或“”填空:
(1)如果,,那么a________b;
(2)如果,,那么a____b;
(3)如果,,那么a____b;
(4)當(dāng),b____0時(shí),或者,b___0時(shí),有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com