【題目】已知ABC中,點(diǎn)DBC邊上一點(diǎn),以AD為直徑的⊙OBC相切于點(diǎn)D,與AD、AC分別交于點(diǎn)EF

(1)如圖①,若∠AEF=52°,求∠C的度數(shù).

(2)如圖②,若EF經(jīng)過(guò)點(diǎn)O,且∠AEF=35°,求∠B的度數(shù).

【答案】(1)52°;(2)55°.

【解析】分析:1)根據(jù)切線的性質(zhì)得BCAD,由圓周角定理得AFD=90°,由同角的余角相等可得C=ADF,由同弧所對(duì)的圓周角相等可得結(jié)論

2)同理得ADB=90°,AEF+∠DEO=90°,求得∠DEO=55°,根據(jù)直徑和等腰三角形的性質(zhì)和三角形內(nèi)角和可得結(jié)論.

詳解:(1)如圖①連接DF,

BC是⊙O的切線BCAD,∴∠ADC=90°,

∴∠FAD+∠C=90°.

AD是⊙O的直徑,∴∠AFD=90°,

∴∠FAD+∠ADF=90°,∴∠C=ADF,

∵∠AEF=ADF∴∠C=AEF=52°;

2)如圖②連接ED

BC與⊙O相切于點(diǎn)D,BCAD∴∠ADB=90°,∴∠ODE+∠EDB=90°.

AD是⊙O的直徑∴∠AED=90°,

∴∠AEF+∠DEO=90°.

∵∠AEF=35°,∴∠DEO=55°,

AD是⊙O的直徑EF經(jīng)過(guò)點(diǎn)O,EO=OD∴∠ODE=OED=55°,

∵∠AED=90°,∴∠BED=90°,∴∠B+∠EDB=90°,∴∠B=ODE=55°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB、C三點(diǎn)在數(shù)軸上的位置如圖所示,它們表示的數(shù)分別是a、bc

(1) 填空:abc________0,ab________acabac________0;(填

(2) |a|2,且點(diǎn)B到點(diǎn)AC的距離相等

當(dāng)b216時(shí),求c的值

bc之間的數(shù)量關(guān)系

P是數(shù)軸上B,C兩點(diǎn)之間的一個(gè)動(dòng)點(diǎn)設(shè)點(diǎn)P表示的數(shù)為x.當(dāng)P點(diǎn)在運(yùn)動(dòng)過(guò)程中,bxcx|xc|10|xa|的值保持不變,求b的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對(duì)稱軸為x=,且經(jīng)過(guò)點(diǎn)(2,0),有下列說(shuō)法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是拋物線上的兩點(diǎn),則y1=y2.上述說(shuō)法正確的是(

A.①②③④ B.③④ C.①③④ D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB6,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)30°后得到△A1BC1,則陰影部分的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題提出):分解因式:(12x2+2xy3x3y;(2a2b2+4a4b

(問(wèn)題探究):某數(shù)學(xué)“探究學(xué)習(xí)”小組對(duì)以上因式分解題目進(jìn)行了如下探究:

探究1:分解因式:(12x2+2xy3x3y

該多項(xiàng)式不能直接使用提取公因式法,公式法進(jìn)行因式分解.于是仔細(xì)觀察多項(xiàng)式的特點(diǎn).甲發(fā)現(xiàn)該多項(xiàng)式前兩項(xiàng)有公因式2x,后兩項(xiàng)有公因式﹣3,分別把它們提出來(lái),剩下的是相同因式(x+y),可以繼續(xù)用提公因式法分解.

解:2x2+2xy3x3y=(2x2+2xy)﹣(3x+3y)=2xx+y)﹣3x+y)=(x+y)(2x3

另:乙發(fā)現(xiàn)該多項(xiàng)式的第二項(xiàng)和第四項(xiàng)含有公因式y,第一項(xiàng)和第三項(xiàng)含有公因式x,把yx提出來(lái),剩下的是相同因式(2x3),可以繼續(xù)用提公因式法分解.

解:2x2+2xy3x3y=(2x23x)+(2xy3y)=x2x3)+y2x3)=(2x3)(x+y

探究2:分解因式:(2a2b2+4a4b

該多項(xiàng)式亦不能直接使用提取公因式法,公式法進(jìn)行因式分解,于是若將此題按探究1的方法分組,將含有a的項(xiàng)分在一組即a2+4aaa+4),含有b的項(xiàng)一組即﹣b24b=﹣bb+4),但發(fā)現(xiàn)aa+4)與﹣bb+4)再?zèng)]有公因式可提,無(wú)法再分解下去.于是再仔細(xì)觀察發(fā)現(xiàn),若先將a2b2看作一組應(yīng)用平方差公式,其余兩項(xiàng)看作一組,提出公因式4,則可繼續(xù)再提出因式,從而達(dá)到分解因式的目的.

解:a2b2+4a4b=(a2b2)+(4a4b)=(a+b)(ab)+4ab)=(ab)(4+a+b

(方法總結(jié)):對(duì)不能直接使用提取公因式法,公式法進(jìn)行分解因式的多項(xiàng)式,我們可考慮把被分解的多項(xiàng)式分成若干組,分別按“基本方法”即提取公因式法和運(yùn)用公式法進(jìn)行分解,然后,綜合起來(lái),再?gòu)目傮w上按“基本方法”繼續(xù)進(jìn)行分解,直到分解出最后結(jié)果.這種分解因式的方法叫做分組分解法.

分組分解法并不是一種獨(dú)立的因式分解的方法,而是通過(guò)對(duì)多項(xiàng)式進(jìn)行適當(dāng)?shù)姆纸M,把多項(xiàng)式轉(zhuǎn)化為可以應(yīng)用“基本方法”分解的結(jié)構(gòu)形式,使之具有公因式,或者符合公式的特點(diǎn)等,從而達(dá)到可以利用“基本方法”進(jìn)行分解因式的目的.

(學(xué)以致用):嘗試運(yùn)用分組分解法解答下列問(wèn)題:

1)分解因式:

2)分解因式:

(拓展提升):

3)嘗試運(yùn)用以上思路分解因式:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工藝廠計(jì)劃一周生產(chǎn)工藝品2100個(gè),平均每天生產(chǎn)300個(gè),但實(shí)際每天生產(chǎn)量與計(jì)劃相比有出入.下表是某周的生產(chǎn)情況(超產(chǎn)記為正、減產(chǎn)記為負(fù)):

1)寫出該廠星期一生產(chǎn)工藝品的數(shù)量;

2)本周產(chǎn)量最多的一天比最少的一天多生產(chǎn)多少個(gè)工藝品?

3)請(qǐng)求出該工藝廠在本周實(shí)際生產(chǎn)工藝品的數(shù)量;

4)已知該廠實(shí)行每周計(jì)件工資制,每生產(chǎn)一個(gè)工藝品可得60元,若超額完成任務(wù),則超過(guò)部分每個(gè)另獎(jiǎng)50元,少生產(chǎn)一個(gè)扣80元.試求該工藝廠在這一周應(yīng)付出的工資總額.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB=90°CDAB于點(diǎn)D,AO平分∠BAC,交CD于點(diǎn)O,EAB上一點(diǎn),且AE=AC。

1)求證:△AOC≌△AOE

2)求證:OEBC。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把8塊相同的小長(zhǎng)方形地磚拼成一塊大長(zhǎng)方形地磚.

1)每塊小長(zhǎng)方形地磚的長(zhǎng)和寬分別是多少?(要求列方程組進(jìn)行解答)

2)小明想用一塊面積為的正方形地毯,沿著邊的方向裁剪出一塊新的長(zhǎng)方形地毯,用來(lái)蓋住這塊大長(zhǎng)方形地磚你幫小明算一算,他能剪出符合要求的地毯?jiǎn)幔?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用“”或“”填空:

1)如果,,那么a________b;

2)如果,那么a____b

3)如果,,那么a____b;

4)當(dāng)b____0時(shí),或者b___0時(shí),有

查看答案和解析>>

同步練習(xí)冊(cè)答案