【題目】列方程解應用題

從甲市到乙市乘坐高鐵路程為150千米,乘坐普通列車的路程為250千米。高鐵的平均速度是普通列車平均速度的3倍,高鐵的乘車時間比普通列車的乘車時間縮短了2小時,高鐵的平均速度是每小時多少千米?

【答案】300

【解析】

設普通列車平均速度是每小時x千米,則高鐵的平均速度是每小時3x千米,

列表如下:

普通列車

高鐵

路程

250

150

速度

x

3x

時間

然后再根據(jù)“高鐵的乘車時間比普通列車的乘車時間縮短了2小時”,列方程并解方程即可(注:分式方程要驗根).

解:設普通列車平均速度是每小時x千米,則高鐵的平均速度是每小時3x千米

由題意可知:

解得:

經(jīng)檢驗:是原方程的解,

∴高鐵的平均速度是每小時3×100=300千米.

答:高鐵的平均速度是每小時300千米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與軸交于、兩點,點在原點的左側,點的坐標為,與軸交于點,點是直線下方的拋物線上一動點.

求這個二次函數(shù)的表達式.

連接,并把沿翻折,得到四邊形,那么是否存在點,使四邊形為菱形?若存在,請求出此時點的坐標;若不存在,請說明理由.

當點運動到什么位置時,四邊形的面積最大?求出此時點的坐標和四邊形的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交于A,B兩點,它們的對稱軸與x軸交于點N,過頂點MMEy軸于點E,連結BEMN于點F.已知點A的坐標為(﹣1,0.

1)求該拋物線的解析式及頂點M的坐標;

2)求△EMF△BNF的面積之比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,將任意兩點P(x1,y1)與Q(x2,y2)之間的“直距”定義為:DPQ=|x1﹣x2|+|y1﹣y2|.

例如:點M(1,﹣2),點N(3,﹣5),則DMN=|1﹣3|+|﹣2﹣(﹣5)|=5.已知點A(1,0)、點B(﹣1,4).

(1)則DAO=  ,DBO=  

(2)如果直線AB上存在點C,使得DCO為2,請你求出點C的坐標;

(3)如果⊙B的半徑為3,點E為⊙B上一點,請你直接寫出DEO的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個二次函數(shù)的圖象,三位同學分別說出了它的一些特點:

甲:對稱軸為直線x=4

乙:與x軸兩個交點的橫坐標都是整數(shù).

丙:與y軸交點的縱坐標也是整數(shù),且以這三個點為頂點的三角形面積為3.請你寫出滿足上述全部特點的一個二次函數(shù)解析式__________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們常見的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡稱為鍋線,鍋口直徑為,鍋深,鍋蓋高(鍋口直徑與鍋蓋直徑視為相同),建立直角坐標系如圖所示(圖是備用圖),如果把鍋縱斷面的拋物線記為,把鍋蓋縱斷面的拋物線記為

的解析式;

如果炒菜鍋時的水位高度是,求此時水面的直徑;

如果將一個底面直徑為,高度為的圓柱形器皿放入炒菜鍋內(nèi)蒸食物,鍋蓋能否正常蓋上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC△ABD不全等,且AC=AD=1,∠ABD=∠ABC=45°,∠ACB=60°,則CD=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點,過點DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC中,CDAB于點D,BD=9,BC=15,AC=20.

(1)求CD的長;

(2)求AB的長;

(3)判斷ABC的形狀.

查看答案和解析>>

同步練習冊答案