精英家教網 > 初中數學 > 題目詳情

【題目】某中學九年級數學興趣小組想測量建筑物AB的高度.他們在C處仰望建筑物頂端,測得仰角為48°,再往建筑物的方向前進6米到達D處,測得仰角為64°,求建筑物的高度.(測角器的高度忽略不計,結果精確到0.1米)
(參考數據:sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)

【答案】解:根據題意,得∠ADB=64°,∠ACB=48°
在Rt△ADB中,tan64°= ,
則BD= AB,
在Rt△ACB中,tan48°= ,
則CB= AB,
∴CD=BC﹣BD
即6= AB﹣ AB
解得:AB= ≈14.7(米),
∴建筑物的高度約為14.7米
【解析】Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根據CD=BC﹣BD可得關于AB 的方程,解方程可得.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,△ABC向右平移3個單位長度,再向上平移2個單位長度,可以得到.

(1)畫出平移后的;

(2)寫出三個頂點的坐標;

(3)已知點Px軸上,、、P為頂點的三角形面積為4,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖示一架水平飛行的無人機AB的尾端點A測得正前方的橋的左端點P的俯角為α其中tanα=2 ,無人機的飛行高度AH為500 米,橋的長度為1255米.
①求點H到橋左端點P的距離;
②若無人機前端點B測得正前方的橋的右端點Q的俯角為30°,求這架無人機的長度AB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在四邊形中,平分于點,點在線段上運動.

1)如圖1,已知.

①若平分,則______;

②若,試說明;

2)如圖2,已知,試說明平分.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂總D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.
(結果精確到0.1m。參考數據:tan20°≈0.36,tan18°≈0.32)

(1)求∠BCD的度數.
(2)求教學樓的高BD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知EFBC,ADBC 1=2,

⑴判斷DMAB的位置關系,并說明理由;

⑵若∠BAC=70°,DM平分∠ADC,求∠ACB的度數。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,大樓AB右側有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點間的距離(結果精確到0.1m)(參考數據: ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某山區(qū)有23名中、小學生因貧困失學需要捐助,資助一名中學生的學習費用需要a元,一名小學生的學習費用需要b元,某校學生積極捐款,我校初中學生每個年級各自分別捐助的貧困中學生和小學生的人數情況如下表:

1)求a,b的值.

2)九年級學生的捐款解決了其余貧困中小學生的學習費用,求九年級學生可捐助的貧困生中、小學生人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,點O為對角線AC的中點,過O點的射線OM,ON分別交ABBC于點E,F,且∠EOF=90°,BOEF交于點P,則下面結論:

①圖形中全等的三角形只有三對;②△EOF是等腰直角三角形;③正方形ABCD的面積等于四邊形OEBF面積的4倍;④BEBF=OA

其中正確結論的個數是(  )

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案