【題目】某山區(qū)有23名中、小學生因貧困失學需要捐助,資助一名中學生的學習費用需要a元,一名小學生的學習費用需要b元,某校學生積極捐款,我校初中學生每個年級各自分別捐助的貧困中學生和小學生的人數(shù)情況如下表:
(1)求a,b的值.
(2)九年級學生的捐款解決了其余貧困中小學生的學習費用,求九年級學生可捐助的貧困生中、小學生人數(shù).
【答案】(1)a、b的值分別為800,600;(2)捐助中學生4人,小學生7人.
【解析】
(1)根據(jù)表格可以看出:資助2名中學生的費用+資助4名小學生的費用=4000元;資助3名中學生的費用+資助3名小學生的費用=4200元,由此可列出方程組,解方程組可得到a、b的值;
(2)設初三年級學生可捐助的貧困中、小學生人數(shù)分別為x、y人,根據(jù)(1)中解的得數(shù)可列出二元一次方程800x+600y=7400,求其整數(shù)解即可.
解:(1)根據(jù)題意,得
,
解得:.
答:a、b的值分別為800,600.
(2)設初三年級學生可捐助的貧困中、小學生人數(shù)分別為x、y人,由題意得:
800x+600y=7400,
化簡得:4x+3y=37,
∵x、y為正整數(shù),x+y=23-(2+4+3+3)=11,
聯(lián)立方程組
解得
故答案為:捐助中學生4人,小學生7人.
科目:初中數(shù)學 來源: 題型:
【題目】校園內有一個花壇,是由兩個邊長均為2.5m的正六邊形圍成的(如圖中的陰影部分所示),學,F(xiàn)要將這個花壇在原有的基礎上擴建成一個如圖所示的菱形區(qū)域,則擴建后菱形區(qū)域的周長為( )
A.30mB.mC.20mD.m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學九年級數(shù)學興趣小組想測量建筑物AB的高度.他們在C處仰望建筑物頂端,測得仰角為48°,再往建筑物的方向前進6米到達D處,測得仰角為64°,求建筑物的高度.(測角器的高度忽略不計,結果精確到0.1米)
(參考數(shù)據(jù):sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某開發(fā)區(qū)有一塊四邊形的空地ABCD,現(xiàn)計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,則要投入_____元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在大樓AB的正前方有一斜坡CD,已知斜坡CD長6 米,坡角∠DCE等于45°,小紅在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的頂點D處測得樓頂B的仰角為45°,其中點A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直線交于點E,過點D作DF∥BE交BC所在直線于點F.
(1)求證:四邊形DEBF是菱形;
(2)若AB=8,AD=4,求四邊形BEDF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;
(2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,
①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.
②若點P、Q的運動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點為頂點的四邊形是平行四邊形,求a與b滿足的數(shù)量關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y= -+1與x軸、y軸分別交于點A、點B(O為坐標原點),將△ABO繞著點B逆時針旋轉60°后,點A恰好落在點C處,那么點C的坐標為___________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com