【題目】如圖所示,在平面直角坐標系中,點A,B的坐標分別為A(a,0),B(b,0),且a,b滿足|a+2|+ =0,點C的坐標為(0,3).
(1)求a,b的值及SABC;
(2)若點M在x軸上,且SACM= SABC , 試求點M的坐標.

【答案】
(1)解:∵|a+2|+ =0,

∴a+2=0,b﹣4=0,

∴a=﹣2,b=4,

∴點A(﹣2,0),點B(4,0).

又∵點C(0,3),

∴AB=|﹣2﹣4|=6,CO=3,

∴SABC= ABCO= ×6×3=9


(2)解:設點M的坐標為(x,0),則AM=|x﹣(﹣2)|=|x+2|,

又∵SACM= SABC,

AMOC= ×9,

|x+2|×3=3,

∴|x+2|=2,

即x+2=±2,

解得:x=0或﹣4,

故點M的坐標為(0,0)或(﹣4,0)


【解析】(1)由“|a+2|+ =0”結合絕對值、算術平方根的非負性即可得出a、b的值,再結合三角形的面積公式即可求出SABC的值;(2)設出點M的坐標,找出線段AM的長度,根據(jù)三角形的面積公式結合SACM= SABC , 即可得出AM的值,從而得出點M的坐標.
【考點精析】本題主要考查了三角形的面積的相關知識點,需要掌握三角形的面積=1/2×底×高才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD的外側,作兩個等邊三角形ADE和DCF,連接AF,BE.

(1)請判斷:AF與BE的數(shù)量關系是 , 位置關系是;
(2)如圖2,若將條件“兩個等邊三角形ADE和DCF”變?yōu)椤皟蓚等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結論是否仍然成立?請作出判斷并給予說明;
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結論都能成立嗎?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下列線段為邊,能組成直角三角形的是(
A.6cm,12cm,14cm
B. cm,1cm, cm
C.1.5cm,2cm,2.5cm
D.2cm,3cm,5cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=DC=5,點P在BC上移動,則當PA+PD取最小值時,BP長為( )

A.1
B.2
C.2.5
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果x=3m+1,y=2+9m,那么用x的代數(shù)式表示y為(  

A. y=2x B. yx2 C. y=(x﹣1)2+2 D. yx2+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,專業(yè)救助船“滬救1”輪、“滬救2”輪分別位于A、B兩處,同時測得事發(fā)地點CA的南偏東60°且CB的南偏東30°上.已知BA的正東方向,且相距100里,請分別求出兩艘船到達事發(fā)地點C的距離.(注:里是海程單位,相當于一海里.結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩塊相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一塊繞直角頂點B逆時針旋轉到△A′BC′的位置,點C′在AC上,A′C′與AB相交于點D,則C′D=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是( 。

A. a3+a3a6B. a6÷a3a2C. a23a8D. a2a3a5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ADBE是高,ABE=45°,點FAB的中點,ADFE、BE分別交于點G、H,CBE=BAD.有下列結論:FD=FEAH=2CD;BCAD=AE2;④∠DFE=2DAC ;若連接CH,則CHEF.其中正確的個數(shù)為(

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

同步練習冊答案