【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,ODOE.

(1)請你數(shù)一數(shù),圖中有多少個角?(備注:小于平角的角);

(2)請通過計算說明OE是否平分∠BOC.

【答案】(1)9個;(2)平分,見解析.

【解析】

(1)根據(jù)角的定義即可解決;

(2)根據(jù)∠BOD=DOC+BOC,首先利用角平分線的定義和鄰補角的定義求得∠DOC和∠BOC,再根據(jù)∠COE=DOE-DOC和∠BOE=BOD-DOE分別求得∠COE與∠BOE的度數(shù)即可說明.

(1)圖中小于平角的角∠AOD,AOC,AOE,DOC,DOE,DOB,COE,COB,EOB,共9個;

(2)因為∠AOC=50°,OD平分∠AOC,

所以∠DOC=AOC=25°,BOC=180°-AOC=180°-50°=130°,

所以∠BOD=DOC+BOC=155°,

因為ODOE,

所以∠DOE=90°,

因為∠DOC=25°,

所以∠COE=DOE-DOC=90°-25°=65°,

又因為∠BOE=BOD-DOE=155°-90°=65°,

所以∠COE=BOE,所以OE平分∠BOC.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】龜兔首次賽跑之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場.圖中的函數(shù)圖象刻畫了龜兔再次賽跑的故事(x表示烏龜從起點出發(fā)所行的時間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:

龜兔再次賽跑的路程為1000

兔子和烏龜同時從起點出發(fā);

烏龜在途中休息了10分鐘;

兔子在途中750處追上烏龜.

其中正確的說法是   .(把你認為正確說法的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,BE、DF分別是∠ABC、∠ADC的平分線,且與對角線AC分別相交于點E、F.
(1)求證:AE=CF;
(2)連結(jié)ED、FB,判斷四邊形BEDF是否是平行四邊形,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】7張如圖1的長為a,寬為b(a>b)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a,b滿足(
A.a= b
B.a=3b
C.a= b
D.a=4b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標為(1,2).

(1)寫出點A、B的坐標;

(2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,寫出A′B′C′的三個頂點坐標;

(3)△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售甲、乙兩種品牌的智能手機,這兩種手機的進價和售價如下表:

進價(元/部)

4000

2500

售價(元/部)

4300

3000

該商場計劃購進兩種手機若干部,共需15.5萬元,預計全部銷售后可獲毛利潤共2.1萬元.
(毛利潤=(售價﹣進價)×銷售量)
(1)該商場計劃購進甲、乙兩種手機各多少部?
(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少甲種手機的購進數(shù)量,增加乙種手機的購進數(shù)量.已知乙種手機增加的數(shù)量是甲種手機減少的數(shù)量的2倍,而且用于購進這兩種手機的總資金不超過16萬元,該商場怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=54°,以AB為直徑的⊙O分別交AC,BC于點D,E,過點B作⊙O的切線,交AC的延長線于點F.
(1)求證:BE=CE;
(2)求∠CBF的度數(shù);
(3)若AB=6,求 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:求1+2+22+23+24+…+22019的值.

解:設(shè)S=1+2+22+23+24+…+22018+22019,①將等式兩邊同時乘2,得

2S=2+22+23+24+25+…+22019+22020,

將②式減去①式,得2SS=22020-1,

S=22020-1,

1+2+22+23+24+…+22019=22020-1.

請你仿照此法計算:

(1)1+2+22+23+24+…+210;

(2)1+3+32+33+34+…+3n(其中n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的半徑為2,弦AB⊥半徑OC,沿AB將弓形ACB翻折,使點C與圓心O重合,則月牙形(圖中實線圍成的部分)的面積是

查看答案和解析>>

同步練習冊答案