【題目】如圖,Rt△ABC中,∠ACB=90°,D是斜邊AB上的中點(diǎn),E是邊BC上的點(diǎn),AE與CD交于點(diǎn)F,且AC2=CECB.
(1)求證:AE⊥CD;
(2)連接BF,如果點(diǎn)E是BC中點(diǎn),求證:∠EBF=∠EAB.
【答案】
(1)證明:∵AC2=CECB,
∴ .
又∵∠ACB=∠ECA=90°
∴△ACB∽△ECA,
∴∠ABC=∠EAC.
∵點(diǎn)D是AB的中點(diǎn),
∴CD=AD,
∴∠ACD=∠CAD
∵∠CAD+∠ABC=90°,
∴∠ACD+∠EAC=90°
∴∠AFC=90°,
∴AE⊥CD
(2)證明:∵AE⊥CD,
∴∠EFC=90°,
∴∠ACE=∠EFC
又∵∠AEC=∠CEF,
∴△ECF∽△EAC
∴
∵點(diǎn)E是BC的中點(diǎn),
∴CE=BE,
∴
∵∠BEF=∠AEB,
∴△BEF∽△AEB
∴∠EBF=∠EAB.
【解析】(1)先根據(jù)題意得出△ACB∽△ECA,再由直角三角形的性質(zhì)得出CD=AD,由∠CAD+∠ABC=90°可得出∠ACD+∠EAC=90°,進(jìn)而可得出∠AFC=90°;(2)根據(jù)AE⊥CD可得出∠EFC=90°,∠ACE=∠EFC,故可得出△ECF∽△EAC,再由點(diǎn)E是BC的中點(diǎn)可知CE=BE,故 ,根據(jù)∠BEF=∠AEB得出△BEF∽△AEB,進(jìn)而可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)批發(fā)商銷(xiāo)售成本為20元/千克的某產(chǎn)品,根據(jù)物價(jià)部門(mén)規(guī)定:該產(chǎn)品每千克售價(jià)不得超過(guò)90元,在銷(xiāo)售過(guò)程中發(fā)現(xiàn)的售量y(千克)與售價(jià)x(元/千克)滿足一次函數(shù)關(guān)系,對(duì)應(yīng)關(guān)系如下表:
售價(jià)x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷(xiāo)售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數(shù)關(guān)系式;
(2)該批發(fā)商若想獲得4000元的利潤(rùn),應(yīng)將售價(jià)定為多少元?
(3)該產(chǎn)品每千克售價(jià)為多少元時(shí),批發(fā)商獲得的利潤(rùn)w(元)最大?此時(shí)的最大利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣x,g(x)=ex﹣ax﹣1(e為自然對(duì)數(shù)的底數(shù)).
(1)討論函數(shù)g(x)的單調(diào)性;
(2)當(dāng)x>0時(shí),f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙P內(nèi)含于⊙O,⊙O的弦AB切⊙P于點(diǎn)C,且AB∥OP.若陰影部分的面積為16π,則弦AB的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E在邊AD上,聯(lián)結(jié)CE并延長(zhǎng),交對(duì)角線BD于點(diǎn)F,交BA的延長(zhǎng)線于點(diǎn)G,如果DE=2AE,那么CF:EF:EG= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是( )
A.∠DAC=∠ABC
B.AC是∠BCD的平分線
C.AC2=BC?CD
D. =
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一張直角三角形紙片ABC,∠C=90°,AB=24,tanB= (如圖),將它折疊使直角頂點(diǎn)C與斜邊AB的中點(diǎn)重合,那么折痕的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com